Chander Kumar Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3554956/publications.pdf

Version: 2024-02-01

218592 223716 73 2,383 26 46 citations g-index h-index papers 80 80 80 1923 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Delineation of Groundwater Potential Zones in Arid Region of India—A Remote Sensing and GIS Approach. Water Resources Management, 2012, 26, 2643-2672.	1.9	176
2	Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. Journal of Geochemical Exploration, 2017, 175, 59-71.	1.5	158
3	Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Advances in Space Research, 2013, 52, 639-655.	1.2	133
4	Geospatial and geostatistical approach for groundwater potential zone delineation. Hydrological Processes, 2015, 29, 395-418.	1.1	116
5	Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab, India. Environmental Earth Sciences, 2011, 62, 1387-1405.	1.3	95
6	Geochemical Modeling of High Fluoride Concentration in Groundwater of Pokhran Area of Rajasthan, India. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 152-158.	1.3	87
7	Application of GWQI to Assess Effect of Land Use Change on Groundwater Quality in Lower Shiwaliks of Punjab: Remote Sensing and GIS Based Approach. Water Resources Management, 2011, 25, 1881-1898.	1.9	84
8	Predicting groundwater arsenic contamination: Regions at risk in highest populated state of India. Water Research, 2019, 159, 65-76.	5. 3	83
9	Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city. International Journal of Applied Earth Observation and Geoinformation, 2012, 19, 348-358.	1.4	76
10	Arsenic enrichment in groundwater and associated health risk in Bari doab region of Indus basin, Punjab, India. Environmental Pollution, 2020, 256, 113324.	3.7	68
11	Quantitative modeling of groundwater in Satluj River basin of Rupnagar district of Punjab using remote sensing and geographic information system. Environmental Earth Sciences, 2011, 62, 871-881.	1.3	66
12	Hydro-Geochemical Assessment of Groundwater Quality in Aseer Region, Saudi Arabia. Water (Switzerland), 2018, 10, 1847.	1.2	62
13	Aqueous geochemistry of fluoride enriched groundwater in arid part of Western India. Environmental Science and Pollution Research, 2015, 22, 2668-2678.	2.7	58
14	Fluoride enrichment in aquifers of the Thar Desert: controlling factors and its geochemical modelling. Hydrological Processes, 2013, 27, 2462-2474.	1.1	57
15	Quantitative analysis of the methane gas emissions from municipal solid waste in India. Scientific Reports, 2018, 8, 2913.	1.6	57
16	Geochemical characterization and heavy metal contamination of groundwater in Satluj River Basin. Environmental Earth Sciences, 2014, 71, 201-216.	1.3	56
17	Characterization of Hydrogeochemical Processes and Fluoride Enrichment in Groundwater of South-Western Punjab. Water Quality, Exposure, and Health, 2015, 7, 373-387.	1.5	56
18	Characterization and evaluation of processes governing the groundwater quality in parts of the Sabarmati basin, Gujarat using hydrochemistry integrated with GIS. Hydrological Processes, 2012, 26, 1538-1551.	1.1	55

#	Article	IF	Citations
19	Evaluation of aqueous geochemistry of fluoride enriched groundwater: A case study of the Patan district, Gujarat, Western India. Water Science, 2017, 31, 215-229.	0.5	53
20	Field testing of over 30,000 wells for arsenic across 400 villages of the Punjab plains of Pakistan and India: Implications for prioritizing mitigation. Science of the Total Environment, 2019, 654, 1358-1363.	3.9	47
21	Geographically weighted regression based quantification of rainfall–topography relationship and rainfall gradient in Central Himalayas. International Journal of Climatology, 2017, 37, 1299-1309.	1.5	45
22	Geochemical modelling, ionic ratio and GIS based mapping of groundwater salinity and assessment of governing processes in Northern Gujarat, India. Environmental Earth Sciences, 2013, 69, 2377-2391.	1.3	43
23	Impacts of Vegetation and Topography on Land Surface Temperature Variability over the Semi-Arid Mountain Cities of Saudi Arabia. Atmosphere, 2020, 11, 762.	1.0	40
24	Integrated Assessment of Groundwater for Agricultural Use in Mewat District of Haryana, India Using Geographical Information System (GIS). Journal of the Indian Society of Remote Sensing, 2016, 44, 747-758.	1.2	38
25	Arsenic contamination in Rapti River Basin, Terai region of India. Journal of Geochemical Exploration, 2018, 192, 120-131.	1.5	35
26	Groundwater Quality Studies in the Kingdom of Saudi Arabia: Prevalent Research and Management Dimensions. Water (Switzerland), 2021, 13, 1266.	1.2	34
27	Spatial and decadal prediction of land use/land cover using multi-layer perceptron-neural network (MLP-NN) algorithm for a semi-arid region of Asir, Saudi Arabia. Earth Science Informatics, 2021, 14, 1547-1562.	1.6	33
28	Hydrogeochemical Evolution and Appraisal of Groundwater Quality in Panna District, Central India. Exposure and Health, 2016, 8, 19-30.	2.8	26
29	Demand for environmental quality information and household response: Evidence from well-water arsenic testing. Journal of Environmental Economics and Management, 2017, 86, 160-192.	2.1	24
30	Google Earth Engine for the Detection of Soiling on Photovoltaic Solar Panels in Arid Environments. Remote Sensing, 2020, 12, 1466.	1.8	24
31	Evaluating the NDVl–Rainfall Relationship in Bisha Watershed, Saudi Arabia Using Non-Stationary Modeling Technique. Atmosphere, 2021, 12, 593.	1.0	24
32	Groundwater fluoride across the Punjab plains of Pakistan and India: Distribution and underlying mechanisms. Science of the Total Environment, 2022, 806, 151353.	3.9	24
33	Chemometric analysis to infer hydro-geochemical processes in a semi-arid region of India. Arabian Journal of Geosciences, 2013, 6, 2915-2932.	0.6	21
34	Determining the genetic origin of nitrate contamination in aquifers of Northern Gujarat, India. Environmental Earth Sciences, 2014, 71, 1711-1719.	1.3	20
35	Estimating Potential Methane Emission from Municipal Solid Waste and a Site Suitability Analysis of Existing Landfills in Delhi, India. Technologies, 2017, 5, 62.	3.0	20
36	Effect of Lockdown Amid COVID-19 on Ambient Air Quality in 16 Indian Cities. Frontiers in Sustainable Cities, 2021, 3, .	1.2	18

#	Article	IF	CITATIONS
37	A comparative analysis of different pixel and object-based classification algorithms using multi-source high spatial resolution satellite data for LULC mapping. Earth Science Informatics, 2021, 14, 2231-2247.	1.6	17
38	Geochemical assessment of groundwater in a desertic region of India using chemometric analysis and entropy water quality index (EWQI). Natural Hazards, 2022, 112, 747-782.	1.6	17
39	Identification of erosional and inundation hazard zones in Ken–Betwa river linking area, India, using remote sensing and GIS. Environmental Monitoring and Assessment, 2011, 182, 341-360.	1.3	16
40	Nonâ€stationary modelling framework for rainfall interpolation in complex terrain. International Journal of Climatology, 2017, 37, 4171-4185.	1.5	16
41	An index-based approach to assess groundwater quality for drinking and irrigation in Asir region of Saudi Arabia. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	16
42	Geochemistry and associated human health risk through potential harmful elements (PHEs) in groundwater of the Indus basin, India. Environmental Earth Sciences, 2020, 79, 1.	1.3	15
43	Examining the rainfall–topography relationship using non-stationary modelling technique in semi-arid Aseer region, Saudi Arabia. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	14
44	Regulation of groundwater arsenic concentrations in the Ravi, Beas, and Sutlej floodplains of Punjab, India. Geochimica Et Cosmochimica Acta, 2020, 276, 384-403.	1.6	14
45	Time series trend analysis of rainfall in last five decades and its quantification in Aseer Region of Saudi Arabia. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	14
46	Predicting impact of urbanization on water resources in megacity Delhi. Remote Sensing Applications: Society and Environment, 2020, 20, 100361.	0.8	12
47	Clustering Data and Incorporating Topographical Variables for Improving Spatial Interpolation of Rainfall in Mountainous Region. Water Resources Management, 2017, 31, 425-442.	1.9	11
48	DEM-based delineation for improving geostatistical interpolation of rainfall in mountainous region of Central Himalayas, India. Theoretical and Applied Climatology, 2017, 130, 51-58.	1.3	11
49	Evaluation of LiDAR and image segmentation based classification techniques for automatic building footprint extraction for a segment of Atlantic County, New Jersey. Geocarto International, 2016, 31, 694-713.	1.7	10
50	Tree species biomass and carbon stock measurement using ground based-LiDAR. Geocarto International, 2015, 30, 293-310.	1.7	9
51	Spatial analysis of soil resources in the Mewat district in the semiarid regions of Haryana, India. Environment, Development and Sustainability, 2018, 20, 661-680.	2.7	9
52	Geospatial modelling for sub-watershed prioritization in Western Himalayan Basin using morphometric parameters. Natural Hazards, 2022, 110, 545-561.	1.6	9
53	A GIS-based methodological framework to characterize the Resource Management Domain (RMD): A case study of Mewat district, Haryana, India. Land Use Policy, 2017, 60, 90-100.	2.5	8
54	Geochemical, Topographical, and Meteorological Controls on Groundwater Arsenic Contamination in Sharda River Basin of Uttar Pradesh, India. Journal of Climate Change, 2020, 6, 71-87.	0.2	8

#	Article	IF	CITATIONS
55	Geophysical approach to delineate arsenic hot spots in the alluvial aquifers of Bhagalpur district, Bihar (India) in the central Gangetic plains. Applied Water Science, 2014, 4, 89-97.	2.8	7
56	Monitoring change in land use and land cover in Rupnagar district of Punjab, India using Landsat and IRS LISS III satellite data. Ecological Questions, 0, 13, 73.	0.1	7
57	Spatial stochastic model for predicting soil organic matter using remote sensing data. Geocarto International, 2022, 37, 413-444.	1.7	5
58	Assessment of urban area dynamics in world's second largest megacity at sub-city (district) level during 1973–2016 along with regional planning. Remote Sensing Applications: Society and Environment, 2020, 20, 100383.	0.8	4
59	Urban Growth and Management in Lucknow City, the Capital of Uttar Pradesh., 2018,, 109-122.		4
60	Identification of resource management domain-specific best practices in the agriculture sector for the Mewat region of Haryana, India. Environment, Development and Sustainability, 2019, 21, 2277-2296.	2.7	3
61	Geochemical modeling to infer genetic origin of groundwater and associated health risks in desertic aquifers. Groundwater for Sustainable Development, 2021, 13, 100569.	2.3	3
62	Depositional environment in great Indian desert using grain size parameters and its chemical characterization. Journal of the Geological Society of India, 2015, 86, 412-420.	0.5	2
63	Vermicomposting of terrestrial weeds Lantana camara L. and Parthenium hysterophorus L.: agriculture solid waste. Ecological Questions, 0, 28, 63.	0.1	2
64	Genetically modified Cotton species detection by LISS-III satellite data. Nature Precedings, 2008, , .	0.1	1
65	Reflectance based semi-empirical model to determine nature and metamorphic grade of almora group of rocks, Kumaon (Lesser) Himalaya. Geocarto International, 2022, 37, 1345-1363.	1.7	1
66	Cause and Occurrence of Drought. , 2017, , 137-148.		1
67	Evaluation of Spectral Mapping Methods of Mineral Aggregates and Rocks along the Thrust Zones of Uttarakhand Using Hyperion Data., 2018,, 251-274.		1
68	Genetically modified Cotton species detection by LISS-III satellite data. Nature Precedings, 2008, , .	0.1	0
69	Monitoring change in land use and land cover in Rupnagar district of Punjab, India using Landsat and IRS LISS III satellite data. Ecological Questions, 2010, 13, .	0.1	O
70	Genetically modified Cotton species detection by LISS-III satellite data. Nature Precedings, 2011, , .	0.1	0
71	Remote Sensing Applications to Infer Yield of Tea in a Part of Sri Lanka. , 2013, , 91-111.		0
72	GaRiRO: Gradient and residual integrated rank ordering of stations in rainfall monitoring network. Earth Science Informatics, 2018, 11, 273-286.	1.6	0

 #	Article	IF	CITATIONS
73	A Comparative Analysis of Fluoride Contamination in a Part of Western India and Indus River Basin. Springer Hydrogeology, 2018, , 257-274.	0.1	0