Joshua F Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3554942/publications.pdf

Version: 2024-02-01

46 papers 1,415 citations

304602 22 h-index 36 g-index

47 all docs

47 docs citations

times ranked

47

1880 citing authors

#	Article	IF	CITATIONS
1	Integrated analysis of transcriptomic datasets to identify placental biomarkers of spontaneous preterm birth. Placenta, 2022, 122, 66-73.	0.7	О
2	Neutralizing antibody activity against SARS-CoV-2 variants in gestational age–matched mother-infant dyads after infection or vaccination. JCI Insight, 2022, 7, .	2.3	13
3	Organophosphate Flame Retardants, Highly Fluorinated Chemicals, and Biomarkers of Placental Development and Disease During Mid-Gestation. Toxicological Sciences, 2021, 181, 215-228.	1.4	22
4	Human placental cytotrophoblast epigenome dynamics over gestation and alterations in placental disease. Developmental Cell, 2021, 56, 1238-1252.e5.	3.1	29
5	Global proteomic analyses of human cytotrophoblast differentiation/invasion. Development (Cambridge), 2021, 148, .	1.2	5
6	Cytotrophoblast extracellular vesicles enhance decidual cell secretion of immune modulators via TNF-alpha. Development (Cambridge), 2020, 147, .	1.2	12
7	Differences in cytochrome p450 enzyme expression and activity in fetal and adult tissues. Placenta, 2020, 100, 35-44.	0.7	26
8	Racial/ethnic and geographic differences in polybrominated diphenyl ether (PBDE) levels across maternal, placental, and fetal tissues during mid-gestation. Scientific Reports, 2020, 10, 12247.	1.6	22
9	Up-regulated cytotrophoblast DOCK4 contributes to over-invasion in placenta accreta spectrum. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15852-15861.	3.3	19
10	Association of polybrominated diphenyl ether (PBDE) levels with biomarkers of placental development and disease during mid-gestation. Environmental Health, 2020, 19, 61.	1.7	13
11	Retinoids and developmental neurotoxicity: Utilizing toxicogenomics to enhance adverse outcome pathways and testing strategies. Reproductive Toxicology, 2020, 96, 102-113.	1.3	8
12	Trisomy 21 is Associated with Caspase-2 Upregulation in Cytotrophoblasts at the Maternal-Fetal Interface. Reproductive Sciences, 2020, 27, 100-109.	1.1	0
13	Circulating Monocytes, Tissue Macrophages, and Malaria. Journal of Tropical Medicine, 2019, 2019, 1-9.	0.6	21
14	Using a Multi-Stage hESC Model to Characterize BDE-47 Toxicity During Neurogenesis. Toxicological Sciences, 2019, 171, 221-234.	1.4	20
15	Genomic Profiling of BDE-47 Effects on Human Placental Cytotrophoblasts. Toxicological Sciences, 2019, 167, 211-226.	1.4	32
16	Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs) in maternal and fetal tissues, and associations with fetal cytochrome P450 gene expression. Environment International, 2018, 112, 269-278.	4.8	66
17	Convergence of placenta biology and genetic risk for schizophrenia. Nature Medicine, 2018, 24, 792-801.	15.2	214
18	Transcriptional Dynamics of Cultured Human Villous Cytotrophoblasts. Endocrinology, 2017, 158, 1581-1594.	1.4	25

#	Article	IF	CITATIONS
19	A genomics-based framework for identifying biomarkers of human neurodevelopmental toxicity. Reproductive Toxicology, 2016, 60, 1-10.	1.3	8
20	Rbpj links uterine transformation and embryo orientation. Cell Research, 2014, 24, 1031-1032.	5 . 7	3
21	Valproic acid-induced gene expression responses in rat whole embryo culture and comparison across in vitro developmental and non-developmental models. Reproductive Toxicology, 2013, 41, 57-66.	1.3	13
22	Dose response analysis of monophthalates in the murine embryonic stem cell test assessed by cardiomyocyte differentiation and gene expression. Reproductive Toxicology, 2013, 35, 81-88.	1.3	27
23	Toxicogenomic Approaches in Developmental Toxicology Testing. Methods in Molecular Biology, 2013, 947, 451-473.	0.4	16
24	Complementary Detection of Embryotoxic Properties of Substances in the Neural and Cardiac Embryonic Stem Cell Tests. Toxicological Sciences, 2013, 132, 118-130.	1.4	37
25	Transcriptomic Analysis of Neurulation and Early Organogenesis in Rat Embryos: An In Vivo and Ex Vivo Comparison. Toxicological Sciences, 2012, 126, 255-266.	1.4	18
26	A Comparison of Gene Expression Responses in Rat Whole Embryo Culture and In Vivo: Time-Dependent Retinoic Acid-Induced Teratogenic Response. Toxicological Sciences, 2012, 126, 242-254.	1.4	34
27	Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn). Toxicology and Applied Pharmacology, 2012, 262, 330-340.	1.3	38
28	Transcriptomic Concentration-Response Evaluation of Valproic Acid, Cyproconazole, and Hexaconazole in the Neural Embryonic Stem Cell Test (ESTn). Toxicological Sciences, 2012, 125, 430-438.	1.4	55
29	Dose–response analysis of phthalate effects on gene expression in rat whole embryo culture. Toxicology and Applied Pharmacology, 2012, 264, 32-41.	1.3	22
30	Triazole induced concentration-related gene signatures in rat whole embryo culture. Reproductive Toxicology, 2012, 34, 275-283.	1.3	47
31	A Review of Toxicogenomic Approaches in Developmental Toxicology. Methods in Molecular Biology, 2012, 889, 347-371.	0.4	18
32	Discriminating classes of developmental toxicants using gene expression profiling in the embryonic stem cell test. Toxicology Letters, 2011, 201, 143-151.	0.4	56
33	Arsenic- and cadmium-induced toxicogenomic response in mouse embryos undergoing neurulation. Toxicology and Applied Pharmacology, 2011, 250, 117-129.	1.3	45
34	Comparison of MeHg-induced toxicogenomic responses across in vivo and in vitro models used in developmental toxicology. Reproductive Toxicology, 2011, 32, 180-188.	1.3	35
35	Gene set assembly for quantitative prediction of developmental toxicity in the embryonic stem cell test. Toxicology, 2011, 284, 63-71.	2.0	33
36	Cadmium Induced p53-Dependent Activation of Stress Signaling, Accumulation of Ubiquitinated Proteins, and Apoptosis in Mouse Embryonic Fibroblast Cells. Toxicological Sciences, 2011, 120, 403-412.	1.4	32

#	Article	lF	CITATIONS
37	Time-Response Evaluation by Transcriptomics of Methylmercury Effects on Neural Differentiation of Murine Embryonic Stem Cells. Toxicological Sciences, 2011, 122, 437-447.	1.4	67
38	Embryonic toxicokinetic and dynamic differences underlying strain sensitivity to cadmium during neurulation. Reproductive Toxicology, 2010, 29, 279-285.	1.3	12
39	Methylmercury induced toxicogenomic response in C57 and SWV mouse embryos undergoing neural tube closure. Reproductive Toxicology, 2010, 30, 284-291.	1.3	30
40	Toxicogenomic profiling in maternal and fetal rodent brains following gestational exposure to chlorpyrifos. Toxicology and Applied Pharmacology, 2010, 245, 310-325.	1.3	40
41	Integrating genetic and toxicogenomic information for determining underlying susceptibility to developmental disorders. Birth Defects Research Part A: Clinical and Molecular Teratology, 2010, 88, 920-930.	1.6	10
42	A systemsâ€based approach to investigate dose―and timeâ€dependent methylmercury―nduced gene expression response in C57BL/6 mouse embryos undergoing neurulation. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2010, 89, 188-200.	1.4	13
43	A System-Based Comparison of Gene Expression Reveals Alterations in Oxidative Stress, Disruption of Ubiquitin-Proteasome System and Altered Cell Cycle Regulation after Exposure to Cadmium and Methylmercury in Mouse Embryonic Fibroblast. Toxicological Sciences, 2010, 114, 356-377.	1.4	49
44	Embryotoxicant-Specific Transcriptomic Responses in Rat Postimplantation Whole-Embryo Culture. Toxicological Sciences, 2010, 118, 675-685.	1.4	38
45	Cadmium-Induced Differential Toxicogenomic Response in Resistant and Sensitive Mouse Strains Undergoing Neurulation. Toxicological Sciences, 2009, 107, 206-219.	1.4	44
46	Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways. Toxicology and Applied Pharmacology, 2008, 233, 389-403.	1.3	28