Eva Lion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3554237/publications.pdf

Version: 2024-02-01

218677 233421 2,451 45 49 26 citations h-index g-index papers 51 51 51 4141 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Preexisting memory CD4 T cells in na \tilde{A} -ve individuals confer robust immunity upon hepatitis B vaccination. ELife, 2022, 11, .	6.0	11
2	Anti-Tumor Potency of Short-Term Interleukin-15 Dendritic Cells Is Potentiated by In Situ Silencing of Programmed-Death Ligands. Frontiers in Immunology, 2022, 13, 734256.	4.8	2
3	Two for one: targeting BCMA and CD19 in B-cell malignancies with off-the-shelf dual-CAR NK-92 cells. Journal of Translational Medicine, 2022, 20, 124.	4.4	21
4	The Ins and Outs of Messenger RNA Electroporation for Physical Gene Delivery in Immune Cell-Based Therapy. Pharmaceutics, 2021, 13, 396.	4.5	18
5	Novel Insights on MRGPRX2-Mediated Hypersensitivity to Neuromuscular Blocking Agents And Fluoroquinolones. Frontiers in Immunology, 2021, 12, 668962.	4.8	30
6	Trial Watch: Adoptive TCR-Engineered T-Cell Immunotherapy for Acute Myeloid Leukemia. Cancers, 2021, 13, 4519.	3.7	2
7	Safety and clinical efficacy of BCMA CAR-T-cell therapy in multiple myeloma. Journal of Hematology and Oncology, 2020, 13, 164.	17.0	88
8	The Quest for the Best: How TCR Affinity, Avidity, and Functional Avidity Affect TCR-Engineered T-Cell Antitumor Responses. Cells, 2020, 9, 1720.	4.1	49
9	PD-L1 siRNA-mediated silencing in acute myeloid leukemia enhances anti-leukemic T cell reactivity. Bone Marrow Transplantation, 2020, 55, 2308-2318.	2.4	12
10	Rapid Assessment of Functional Avidity of Tumor-Specific T Cell Receptors Using an Antigen-Presenting Tumor Cell Line Electroporated with Full-Length Tumor Antigen mRNA. Cancers, 2020, 12, 256.	3.7	12
11	Single Domain Antibody-Mediated Blockade of Programmed Death-Ligand 1 on Dendritic Cells Enhances CD8 T-cell Activation and Cytokine Production. Vaccines, 2019, 7, 85.	4.4	17
12	Evaluating a Single Domain Antibody Targeting Human PD-L1 as a Nuclear Imaging and Therapeutic Agent. Cancers, 2019, 11, 872.	3.7	50
13	Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells. Cancers, 2019, 11, 1597.	3.7	77
14	Dendritic Cell-Based and Other Vaccination Strategies for Pediatric Cancer. Cancers, 2019, 11, 1396.	3.7	13
15	Dendritic Cell-Based Immunotherapy of Acute Myeloid Leukemia. Journal of Clinical Medicine, 2019, 8, 579.	2.4	48
16	Increased herpes zoster risk associated with poor HLA-A immediate early 62 protein (IE62) affinity. Immunogenetics, 2018, 70, 363-372.	2.4	8
17	Efficient and Non-genotoxic RNA-Based Engineering of Human T Cells Using Tumor-Specific T Cell Receptors With Minimal TCR Mispairing. Frontiers in Immunology, 2018, 9, 2503.	4.8	29
18	Dendritic Cells and Programmed Death-1 Blockade: A Joint Venture to Combat Cancer. Frontiers in Immunology, 2018, 9, 394.	4.8	84

#	Article	lF	Citations
19	A versatile T cell-based assay to assess therapeutic antigen-specific PD-1-targeted approaches. Oncotarget, 2018, 9, 27797-27808.	1.8	17
20	Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood, 2017, 130, 1713-1721.	1.4	170
21	Monocyte-Derived Dendritic Cells with Silenced PD-1 Ligands and Transpresenting Interleukin-15 Stimulate Strong Tumor-Reactive T-cell Expansion. Cancer Immunology Research, 2017, 5, 710-715.	3.4	36
22	IL-15 receptor alpha as the magic wand to boost the success of IL-15 antitumor therapies: The upswing of IL-15 transpresentation., 2017, 170, 73-79.		19
23	Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells. Oncotarget, 2017, 8, 13652-13665.	1.8	18
24	Interleukin-15 stimulates natural killer cell-mediated killing of both human pancreatic cancer and stellate cells. Oncotarget, 2017, 8, 56968-56979.	1.8	59
25	Abundant expression of TIM-3, LAG-3, PD-1 and PD-L1 as immunotherapy checkpoint targets in effusions of mesothelioma patients. Oncotarget, 2017, 8, 89722-89735.	1.8	43
26	Interleukin-15 and Interleukin-15 Receptor $\hat{l}\pm$ mRNA-engineered Dendritic Cells as Promising Candidates for Dendritic Cell-based Vaccination in Cancer Immunotherapy. Journal of Cancer Science & Therapy, 2016, 08, .	1.7	0
27	Generation and Cryopreservation of Clinical Grade Wilms' Tumor 1 mRNA-Loaded Dendritic Cell Vaccines for Cancer Immunotherapy. Methods in Molecular Biology, 2016, 1393, 27-35.	0.9	6
28	Interleukin-15 enhances the proliferation, stimulatory phenotype, and antitumor effector functions of human gamma delta T cells. Journal of Hematology and Oncology, 2016, 9, 101.	17.0	96
29	Interleukin-15 Dendritic Cells Harness NK Cell Cytotoxic Effector Function in a Contact- and IL-15-Dependent Manner. PLoS ONE, 2015, 10, e0123340.	2.5	47
30	Engineering monocyte-derived dendritic cells to secrete interferon- $\hat{l}\pm$ enhances their ability to promote adaptive and innate anti-tumor immune effector functions. Cancer Immunology, Immunotherapy, 2015, 64, 831-842.	4.2	27
31	Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy. Oncolmmunology, 2015, 4, e1021538.	4.6	53
32	Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacological Reviews, 2015, 67, 731-753.	16.0	129
33	Poly(I:C) as cancer vaccine adjuvant: Knocking on the door of medical breakthroughs. , 2015, 146, 120-131.		134
34	Transpresentation of interleukin-15 by IL-15/IL-15Rî \pm mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity. Oncotarget, 2015, 6, 44123-44133.	1.8	39
35	HPV vaccine stimulates cytotoxic activity of killer dendritic cells and natural killer cells against HPV â€positive tumour cells. Journal of Cellular and Molecular Medicine, 2014, 18, 1372-1380.	3.6	16
36	Clinical use of dendritic cells for cancer therapy. Lancet Oncology, The, 2014, 15, e257-e267.	10.7	565

#	Article	IF	CITATIONS
37	Vaccination with WT1 mRNA-Electroporated Dendritic Cells: Report of Clinical Outcome in 66 Cancer Patients. Blood, 2014, 124, 310-310.	1.4	5
38	Dendritic cell vaccination in malignant pleural mesothelioma: A phase I/II study Journal of Clinical Oncology, 2014, 32, 7583-7583.	1.6	10
39	Loading of Acute Myeloid Leukemia Cells with Poly(I:C) by Electroporation. Methods in Molecular Biology, 2014, 1139, 233-241.	0.9	0
40	CD56 marks human dendritic cell subsets with cytotoxic potential. Oncolmmunology, 2013, 2, e23037.	4.6	29
41	Interleukin-15 dendritic cells as vaccine candidates for cancer immunotherapy. Human Vaccines and Immunotherapeutics, 2013, 9, 1956-1961.	3.3	28
42	NK Cells: Key to Success of DC-Based Cancer Vaccines?. Oncologist, 2012, 17, 1256-1270.	3.7	76
43	Dendritic cell vaccination in acute myeloid leukemia. Cytotherapy, 2012, 14, 647-656.	0.7	49
44	Human Tears Reveal Insights into Corneal Neovascularization. PLoS ONE, 2012, 7, e36451.	2.5	34
45	Interleukin-15-Induced CD56+ Myeloid Dendritic Cells Combine Potent Tumor Antigen Presentation with Direct Tumoricidal Potential. PLoS ONE, 2012, 7, e51851.	2.5	48
46	Poly(I:C) Enhances the Susceptibility of Leukemic Cells to NK Cell Cytotoxicity and Phagocytosis by DC. PLoS ONE, 2011, 6, e20952.	2.5	31
47	Dendritic cell vaccine therapy for acute myeloid leukemia: Questions and answers. Hum Vaccin, 2011, 7, 579-584.	2.4	30
48	The Toll-like receptor 7/8 agonist resiquimod greatly increases the immunostimulatory capacity of human acute myeloid leukemia cells. Cancer Immunology, Immunotherapy, 2010, 59, 35-46.	4.2	51
49	Acute myeloid leukemic cell lines loaded with synthetic dsRNA trigger IFN-Î ³ secretion by human NK cells. Leukemia Research, 2009, 33, 539-546.	0.8	11