William Valdar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3553767/publications.pdf Version: 2024-02-01

ΜΠΠΑΜ ΛΑΓΡΑΡ

#	Article	IF	CITATIONS
1	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	9.4	1,034
2	Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurology, The, 2006, 5, 932-936.	4.9	785
3	A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana. PLoS Genetics, 2009, 5, e1000551.	1.5	554
4	Genome-wide genetic association of complex traits in heterogeneous stock mice. Nature Genetics, 2006, 38, 879-887.	9.4	508
5	Strategies for mapping and cloning quantitative trait genes in rodents. Nature Reviews Genetics, 2005, 6, 271-286.	7.7	462
6	High-Resolution Genetic Mapping Using the Mouse Diversity Outbred Population. Genetics, 2012, 190, 437-447.	1.2	437
7	Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans. Cell, 2007, 128, 45-57.	13.5	397
8	Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Research, 2011, 21, 1213-1222.	2.4	327
9	Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance. Nature Genetics, 2015, 47, 353-360.	9.4	204
10	Quantitative Trait Locus Mapping Methods for Diversity Outbred Mice. G3: Genes, Genomes, Genetics, 2014, 4, 1623-1633.	0.8	195
11	Modeling Host Genetic Regulation of Influenza Pathogenesis in the Collaborative Cross. PLoS Pathogens, 2013, 9, e1003196.	2.1	183
12	Simulating the Collaborative Cross: Power of Quantitative Trait Loci Detection and Mapping Resolution in Large Sets of Recombinant Inbred Strains of Mice. Genetics, 2006, 172, 1783-1797.	1.2	168
13	Genetic and Environmental Effects on Complex Traits in Mice. Genetics, 2006, 174, 959-984.	1.2	161
14	Reproducibility and replicability of rodent phenotyping in preclinical studies. Neuroscience and Biobehavioral Reviews, 2018, 87, 218-232.	2.9	153
15	Autoimmune disease in families with multiple sclerosis: a population-based study. Lancet Neurology, The, 2007, 6, 604-610.	4.9	145
16	Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross. PLoS Genetics, 2015, 11, e1005504.	1.5	137
17	Mapping in Structured Populations by Resample Model Averaging. Genetics, 2009, 182, 1263-1277.	1.2	133
18	Detecting Major Genetic Loci Controlling Phenotypic Variability in Experimental Crosses. Genetics, 2011, 188, 435-447.	1.2	129

WILLIAM VALDAR

#	Article	IF	CITATIONS
19	Recent developments in statistical methods for detecting genetic loci affecting phenotypic variability. BMC Genetics, 2012, 13, 63.	2.7	105
20	A protocol for high-throughput phenotyping, suitable for quantitative trait analysis in mice. Mammalian Genome, 2006, 17, 129-146.	1.0	99
21	Age of puberty and the risk of multiple sclerosis: a population based study. European Journal of Neurology, 2009, 16, 342-347.	1.7	86
22	Association of Infectious Mononucleosis with Multiple Sclerosis. Neuroepidemiology, 2009, 32, 257-262.	1.1	85
23	Maternal vitamin D depletion alters DNA methylation at imprinted loci in multiple generations. Clinical Epigenetics, 2016, 8, 107.	1.8	74
24	Unlearned anxiety predicts learned fear: A comparison among heterogeneous rats and the Roman rat strains. Behavioural Brain Research, 2009, 202, 92-101.	1.2	73
25	A resource for the simultaneous high-resolution mapping of multiple quantitative trait loci in rats: The NIH heterogeneous stock. Genome Research, 2009, 19, 150-158.	2.4	72
26	Using the emerging Collaborative Cross to probe the immune system. Genes and Immunity, 2014, 15, 38-46.	2.2	71
27	High resolution mapping of expression QTLs in heterogeneous stock mice in multiple tissues. Genome Research, 2009, 19, 1133-1140.	2.4	69
28	Genetic Fineâ€Mapping and Identification of Candidate Genes and Variants for Adiposity Traits in Outbred Rats. Obesity, 2018, 26, 213-222.	1.5	64
29	Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research. Genetics, 2020, 216, 905-930.	1.2	58
30	Fearfulness in a large N/Nih genetically heterogeneous rat stock: Differential profiles of timidity and defensive flight in males and females. Behavioural Brain Research, 2008, 188, 41-55.	1.2	49
31	Fine-mapping a locus for glucose tolerance using heterogeneous stock rats. Physiological Genomics, 2010, 41, 102-108.	1.0	47
32	A General Bayesian Approach to Analyzing Diallel Crosses of Inbred Strains. Genetics, 2012, 190, 413-435.	1.2	47
33	Candidate Risk Factors and Mechanisms for Tolvaptan-Induced Liver Injury Are Identified Using a Collaborative Cross Approach. Toxicological Sciences, 2017, 156, kfw269.	1.4	46
34	Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats. Physiological Genomics, 2012, 44, 1013-1026.	1.0	45
35	Determinants of QTL Mapping Power in the Realized Collaborative Cross. G3: Genes, Genomes, Genetics, 2019, 9, 1707-1727.	0.8	45
36	Plasma Levels of Soluble Interleukin-2 Receptor α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2246-2253.	1.1	43

WILLIAM VALDAR

#	Article	IF	CITATIONS
37	Genome- and exome-wide association study of serum lipoprotein (a) in the Jackson Heart Study. Journal of Human Genetics, 2015, 60, 755-761.	1.1	42
38	Genetic Architecture of Skewed X Inactivation in the Laboratory Mouse. PLoS Genetics, 2013, 9, e1003853.	1.5	41
39	Bayesian Modeling of Haplotype Effects in Multiparent Populations. Genetics, 2014, 198, 139-156.	1.2	36
40	Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation. PLoS Genetics, 2020, 16, e1008537.	1.5	35
41	Estimating the number of coding mutations in genotypic and phenotypic driven N-ethyl-N-nitrosourea (ENU) screens: revisited. Mammalian Genome, 2007, 18, 123-124.	1.0	30
42	Genetics of Adverse Reactions to Haloperidol in a Mouse Diallel: A Drug–Placebo Experiment and Bayesian Causal Analysis. Genetics, 2014, 196, 321-347.	1.2	30
43	Perinatal nutrition interacts with genetic background to alter behavior in a parentâ€ofâ€originâ€dependent manner in adult Collaborative Cross mice. Genes, Brain and Behavior, 2018, 17, e12438.	1.1	30
44	Midregional pro-adrenomedullin plasma concentrations are blunted in severe preeclampsia. Placenta, 2014, 35, 780-783.	0.7	29
45	Bayesian Diallel Analysis Reveals <i>Mx1</i> -Dependent and <i>Mx1</i> -Independent Effects on Response to Influenza A Virus in Mice. G3: Genes, Genomes, Genetics, 2018, 8, 427-445.	0.8	27
46	Inbred Strain Variant Database (ISVdb): A Repository for Probabilistically Informed Sequence Differences Among the Collaborative Cross Strains and Their Founders. G3: Genes, Genomes, Genetics, 2017, 7, 1623-1630.	0.8	26
47	Dissecting the Genetic Architecture of Shoot Growth in Carrot (<i>Daucus carota</i> L.) Using a Diallel Mating Design. G3: Genes, Genomes, Genetics, 2018, 8, 411-426.	0.8	25
48	Characterization of genetically complex Collaborative Cross mouse strains that model divergent locomotor activating and reinforcing properties of cocaine. Psychopharmacology, 2020, 237, 979-996.	1.5	25
49	Reprioritizing Genetic Associations in Hit Regions Using LASSOâ€Based Resample Model Averaging. Genetic Epidemiology, 2012, 36, 451-462.	0.6	22
50	Identification of Candidate Risk Factor Genes for Human Idelalisib Toxicity Using a Collaborative Cross Approach. Toxicological Sciences, 2019, 172, 265-278.	1.4	22
51	Deciphering gene-environment interactions through mouse models of allergic asthma. Journal of Allergy and Clinical Immunology, 2009, 123, 14-23.	1.5	21
52	Genomeâ€wide and speciesâ€wide dissection of the genetics of arthritis severity in heterogeneous stock mice. Arthritis and Rheumatism, 2011, 63, 2630-2640.	6.7	20
53	High-resolution mapping of a complex disease, a model for rheumatoid arthritis, using heterogeneous stock mice. Human Molecular Genetics, 2011, 20, 3031-3041.	1.4	20
54	Ovariectomy results in inbred strain-specific increases in anxiety-like behavior in mice. Physiology and Behavior, 2016, 167, 404-412.	1.0	19

WILLIAM VALDAR

#	Article	IF	CITATIONS
55	Genomewide SNP Screen to Detect Quantitative Trait Loci for Alcohol Preference in the High Alcohol Preferring and Low Alcohol Preferring Mice. Alcoholism: Clinical and Experimental Research, 2009, 33, 531-537.	1.4	18
56	Fineâ€Mapping Additive and Dominant SNP Effects Using Group‣ASSO and Fractional Resample Model Averaging. Genetic Epidemiology, 2015, 39, 77-88.	0.6	18
57	A Permutation Approach for Selecting the Penalty Parameter in Penalized Model Selection. Biometrics, 2015, 71, 1185-1194.	0.8	18
58	Joint estimation of multiple dependent Gaussian graphical models with applications to mouse genomics. Biometrika, 2016, 103, 493-511.	1.3	15
59	Inferring the Allelic Series at QTL in Multiparental Populations. Genetics, 2020, 216, 957-983.	1.2	14
60	No Effect of Birth Weight on the Risk of Multiple Sclerosis. Neuroepidemiology, 2008, 31, 181-184.	1.1	13
61	QTL Mapping on a Background of Variance Heterogeneity. G3: Genes, Genomes, Genetics, 2018, 8, 3767-3782.	0.8	13
62	Sept8/SEPTIN8 involvement in cellular structure and kidney damage is identified by genetic mapping and a novel human tubule hypoxic model. Scientific Reports, 2021, 11, 2071.	1.6	13
63	Reciprocal F1 Hybrids of Two Inbred Mouse Strains Reveal Parent-of-Origin and Perinatal Diet Effects on Behavior and Expression. G3: Genes, Genomes, Genetics, 2018, 8, 3447-3468.	0.8	12
64	Human-relevant mechanisms and risk factors for TAK-875-Induced liver injury identified via a gene pathway-based approach in Collaborative Cross mice. Toxicology, 2021, 461, 152902.	2.0	12
65	Impact of vitamin D depletion during development on mouse sperm DNA methylation. Epigenetics, 2018, 13, 959-974.	1.3	11
66	A Diallel of the Mouse Collaborative Cross Founders Reveals Strong Strain-Specific Maternal Effects on Litter Size. G3: Genes, Genomes, Genetics, 2019, 9, 1613-1622.	0.8	11
67	Mean-Variance QTL Mapping Identifies Novel QTL for Circadian Activity and Exploratory Behavior in Mice. G3: Genes, Genomes, Genetics, 2018, 8, 3783-3790.	0.8	10
68	Transcriptome-wide analyses of adipose tissue in outbred rats reveal genetic regulatory mechanisms relevant for human obesity. Physiological Genomics, 2022, 54, 206-219.	1.0	9
69	vqtl: An R Package for Mean-Variance QTL Mapping. G3: Genes, Genomes, Genetics, 2018, 8, 3757-3766.	0.8	8
70	A Bayesian model selection approach to mediation analysis. PLoS Genetics, 2022, 18, e1010184.	1.5	8
71	Maternal Liver Metabolic Response to Chronic Vitamin D Deficiency Is Determined by Mouse Strain Genetic Background. Current Developments in Nutrition, 2020, 4, nzaa106.	0.1	5
72	Bayesian modeling of skewed X inactivation in genetically diverse mice identifies a novel <i>Xce</i> allele associated with copy number changes. Genetics, 2021, 218, .	1.2	5

#	Article	IF	CITATIONS
73	Quantitative trait loci for energy balance traits in an advanced intercross line derived from mice divergently selected for heat loss. PeerJ, 2014, 2, e392.	0.9	3
74	Title is missing!. , 2020, 16, e1008537.		0
75	Title is missing!. , 2020, 16, e1008537.		0
76	Title is missing!. , 2020, 16, e1008537.		0
77	Title is missing!. , 2020, 16, e1008537.		0