Juan Antonio Cecilia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/355342/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glyphosate adsorption onto porous clay heterostructure (PCH): kinetic and thermodynamic studies. Brazilian Journal of Chemical Engineering, 2022, 39, 903-917.	0.7	5
2	Insights into optimized synthesis conditions of hollow microspheres of silica for water vapor adsorption. Chemical Engineering Research and Design, 2022, 177, 583-593.	2.7	2
3	Applicability of mesoporous silica type SBA-15 as feasible support for the immobilization of Yarrowia lipolytica lipase and Candida antarctica lipase B. Brazilian Journal of Chemical Engineering, 2022, 39, 1013-1021.	0.7	4
4	Effect of the Colloidal Preparation Method for Supported Preformed Colloidal Au Nanoparticles for the Liquid Phase Oxidation of 1,6-Hexanediol to Adipic Acid. Catalysts, 2022, 12, 196.	1.6	11
5	Synthesis of Porous Clay Heterostructures Modified with SiO ₂ –ZrO ₂ Nanoparticles for the Valorization of Furfural in Oneâ€Pot Process. Advanced Sustainable Systems, 2022, 6, .	2.7	6
6	Temperature-Dependent Activity of Gold Nanocatalysts Supported on Activated Carbon in Redox Catalytic Reactions: 5-Hydroxymethylfurfural Oxidation and 4-Nitrophenol Reduction Comparison. Catalysts, 2022, 12, 323.	1.6	5
7	Kaolinite-based zeolites synthesis and their application in CO2 capture processes. Fuel, 2022, 320, 123953.	3.4	15
8	Tailoring the selectivity of Cu-based catalysts in the furfural hydrogenation reaction: Influence of the silica support. Fuel, 2022, 319, 123827.	3.4	16
9	Supported ruthenium catalysts for the aqueous-phase selective hydrogenation of furfural to furfuryl alcohol. Catalysis Today, 2022, 394-396, 81-93.	2.2	13
10	Towards functionalized graphene/polymer monolithic structures for selective CO2 capture. Microporous and Mesoporous Materials, 2022, 337, 111907.	2.2	7
11	Oxidative condensation/esterification of furfural with ethanol using preformed Au colloidal nanoparticles. Impact of stabilizer and heat treatment protocols on catalytic activity and stability. Molecular Catalysis, 2022, 528, 112438.	1.0	3
12	Influence of morphology of zirconium-doped mesoporous silicas on 5-hydroxymethylfurfural production from mono-, di- and polysaccharides. Catalysis Today, 2021, 367, 297-309.	2.2	6
13	Evaluation of the ZrO2/Al2O3 system as catalysts in the catalytic transfer hydrogenation of furfural to obtain furfuryl alcohol. Applied Catalysis A: General, 2021, 609, 117905.	2.2	32
14	Glycerol etherification towards selective diglycerol over mixed oxides derived from hydrotalcites: effect of Ni loading. Journal of Sol-Gel Science and Technology, 2021, 97, 351-364.	1.1	14
15	Production of biolubricants from soybean oil: Studies for an integrated process with the current biodiesel industry. Chemical Engineering Research and Design, 2021, 165, 456-466.	2.7	22
16	Microbial Degradation of Lignocellulosic Biomass to Obtain High Value-Added Products. Environmental and Microbial Biotechnology, 2021, , 283-314.	0.4	0
17	CO2 Valorization and Its Subsequent Valorization. Molecules, 2021, 26, 500.	1.7	2
18	Catalytic Applications of Clay Minerals and Hydrotalcites. Catalysts, 2021, 11, 68.	1.6	6

#	Article	IF	CITATIONS
19	Effect of Polyvinyl Alcohol Ligands on Supported Gold Nano-Catalysts: Morphological and Kinetics Studies. Nanomaterials, 2021, 11, 879.	1.9	14
20	Influence of Lewis acidity and CaCl2 on the direct transformation of glucose to 5-hydroxymethylfurfural. Molecular Catalysis, 2021, 510, 111685.	1.0	6
21	H ₂ S and H ₂ O Combined Effect on CO ₂ Capture by Amino Functionalized Hollow Microsphere Silicas. Industrial & Engineering Chemistry Research, 2021, 60, 10139-10154.	1.8	6
22	PdO Supported on TiO ₂ for the Oxidative Condensation of Furfural with Ethanol: Insights on Reactivity and Product Selectivity. ACS Sustainable Chemistry and Engineering, 2021, 9, 10100-10112.	3.2	7
23	Synthesis of catalysts by pyrolysis of Cu-chitosan complexes and their evaluation in the hydrogenation of furfural to value-added products. Molecular Catalysis, 2021, 512, 111774.	1.0	4
24	Protein Adsorption onto Modified Porous Silica by Single and Binary Human Serum Protein Solutions. International Journal of Molecular Sciences, 2021, 22, 9164.	1.8	4
25	Gas phase hydrogenation of furfural to obtain valuable products using commercial Cr-free catalysts as an environmentally sustainable alternative to copper chromite. Journal of Environmental Chemical Engineering, 2021, 9, 105468.	3.3	14
26	2-MeTHF., 2021, , 75-98.		2
27	The relevance of Lewis acid sites on the gas phase reaction of levulinic acid into ethyl valerate using CoSBA-xAl bifunctional catalysts. Catalysis Science and Technology, 2021, 11, 4280-4293.	2.1	5
28	Valorization of agricultural waste as a carbon materials for selective separation and storage of CO2, H2 and N2. Biomass and Bioenergy, 2021, 155, 106297.	2.9	13
29	CO2 Capture by Reduced Graphene Oxide Monoliths with Incorporated CeO2 Grafted with Functionalized Polymer Brushes. Applied Sciences (Switzerland), 2021, 11, 11154.	1.3	1
30	Porous SiO ₂ Nanospheres Modified with ZrO ₂ and Their Use in One-Pot Catalytic Processes to Obtain Value-Added Chemicals from Furfural. Industrial & Engineering Chemistry Research, 2021, 60, 18791-18805.	1.8	10
31	Glycerol Oligomerization Using Low Cost Dolomite Catalyst. Waste and Biomass Valorization, 2020, 11, 1499-1512.	1.8	22
32	Insights into CO2 adsorption in amino-functionalized SBA-15 synthesized at different aging temperature. Adsorption, 2020, 26, 225-240.	1.4	36
33	Iron phosphides presenting different stoichiometry as nanocatalysts in the HDO of phenol. Catalysis Today, 2020, 349, 117-127.	2.2	2
34	Microwave assisted acid treatment of kerolitic clays from the Neogene Madrid Basin (Spain) and its use in CO2 capture processes. Microporous and Mesoporous Materials, 2020, 292, 109749.	2.2	9
35	Fe2O3 supported on hollow micro/mesospheres silica for the catalytic partial oxidation of H2S to sulfur. Microporous and Mesoporous Materials, 2020, 294, 109875.	2.2	17
36	Oxidative Condensation of Furfural with Ethanol Using Pd-Based Catalysts: Influence of the Support. Catalysts, 2020, 10, 1309.	1.6	6

#	Article	IF	CITATIONS
37	Modification of the textural properties of palygorskite through microwave assisted acid treatment. Influence of the octahedral sheet composition. Applied Clay Science, 2020, 196, 105745.	2.6	14
38	Catalytic Activity of Mixed Al2O3-ZrO2 Oxides for Glucose Conversion into 5-Hydroxymethylfurfural. Catalysts, 2020, 10, 878.	1.6	6
39	Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules, 2020, 25, 3981.	1.7	246
40	Assessing CO2 Adsorption on Amino-Functionalized Mesocellular Foams Synthesized at Different Aging Temperatures. Frontiers in Chemistry, 2020, 8, 591766.	1.8	15
41	Gas-Phase Hydrogenation of Furfural to Furfuryl Alcohol over Cu-ZnO-Al2O3 Catalysts Prepared from Layered Double Hydroxides. Catalysts, 2020, 10, 486.	1.6	15
42	6. Advances in the application of transition metal phosphide catalysts for hydrodeoxygenation reactions of bio-oil from biomass pyrolysis. , 2020, , 145-166.		2
43	Recovery of pentoses-containing olive stones for their conversion into furfural in the presence of solid acid catalysts. Chemical Engineering Research and Design, 2020, 143, 1-13.	2.7	6
44	Adsorption of Salmonella in Clay Minerals and Clay-Based Materials. Minerals (Basel, Switzerland), 2020, 10, 130.	0.8	12
45	An Overview of the Biolubricant Production Process: Challenges and Future Perspectives. Processes, 2020, 8, 257.	1.3	116
46	Photocatalyzed preferential oxidation of CO under simulated sunlight using Au–transition metal oxide–sepiolite catalysts. Dalton Transactions, 2020, 49, 3946-3955.	1.6	4
47	Tuning Ca–Al-based catalysts' composition to isomerize or epimerize glucose and other sugars. Green Chemistry, 2020, 22, 1393-1405.	4.6	17
48	The role of nitride species in the gas-phase furfural hydrogenation activity of supported nickel catalysts. Molecular Catalysis, 2020, 487, 110889.	1.0	9
49	Enhanced NiO Dispersion on a High Surface Area Pillared Heterostructure Covered by Niobium Leads to Optimal Behaviour in the Oxidative Dehydrogenation of Ethane. Chemistry - A European Journal, 2020, 26, 9371-9381.	1.7	7
50	Graphene-Based Monolithic Nanostructures for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2020, 59, 8612-8621.	1.8	36
51	Oxidation of lignocellulosic platform molecules to value-added chemicals using heterogeneous catalytic technologies. Catalysis Science and Technology, 2020, 10, 2721-2757.	2.1	60
52	Production of Biofuels by 5-Hydroxymethylfurfural Etherification Using Ion-Exchange Resins as Solid Acid Catalysts. , 2020, 2, .		0
53	Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane. Catalysis Today, 2019, 333, 10-16.	2.2	35
54	Synergistic effect between CaCl2 and Î ³ -Al2O3 for furfural production by dehydration of hemicellulosic carbohydrates. Applied Catalysis A: General, 2019, 585, 117188.	2.2	17

#	Article	IF	CITATIONS
55	Mesoporous Materials: From Synthesis to Applications. International Journal of Molecular Sciences, 2019, 20, 3213.	1.8	27
56	Catalytic transfer hydrogenation of furfural to furfuryl alcohol over calcined MgFe hydrotalcites. Applied Clay Science, 2019, 183, 105351.	2.6	31
57	LIGHT N-PARAFFINS SEPARATION BY INVERSE GAS CHROMATOGRAPHY WITH CUBAN VOLCANIC GLASS. Brazilian Journal of Chemical Engineering, 2019, 36, 531-539.	0.7	3
58	CO2 Adsorption of Materials Synthesized from Clay Minerals: A Review. Minerals (Basel, Switzerland), 2019, 9, 514.	0.8	51
59	Lignin Depolymerization to BTXs. Topics in Current Chemistry, 2019, 377, 26.	3.0	24
60	Industrial Food Waste Valorization: A General Overview. , 2019, , 253-277.		24
61	Influence of the Incorporation of Basic or Amphoteric Oxides on the Performance of Cu-Based Catalysts Supported on Sepiolite in Furfural Hydrogenation. Catalysts, 2019, 9, 315.	1.6	18
62	Selective Production of Furan from Gas-Phase Furfural Decarbonylation on Ni-MgO Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 7676-7685.	3.2	42
63	Ni supported on sepiolite catalysts for the hydrogenation of furfural to value-added chemicals: influence of the synthesis method on the catalytic performance. Topics in Catalysis, 2019, 62, 535-550.	1.3	16
64	Influence of Structure-modifying Agents in the Synthesis of Zr-doped SBA-15 Silica and Their Use as Catalysts in the Furfural Hydrogenation to Obtain High Value-added Products through the Meerwein-Ponndorf-Verley Reduction. International Journal of Molecular Sciences, 2019, 20, 828.	1.8	25
65	Direct Conversion of Levulinic Acid into Valeric Biofuels Using Pd Supported Over Zeolites as Catalysts. Topics in Catalysis, 2019, 62, 579-588.	1.3	24
66	Nanosponges for Carbon Dioxide Sequestration. Sustainable Agriculture Reviews, 2019, , 1-39.	0.6	0
67	Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review. Chemical Record, 2018, 18, 1085-1104.	2.9	52
68	Influence of the synthetic conditions on the composition, morphology of CuMgAl hydrotalcites and their use as catalytic precursor in diesel soot combustion reactions. Applied Clay Science, 2018, 157, 148-157.	2.6	23
69	Selective production of furfuryl alcohol from furfural by catalytic transfer hydrogenation over commercial aluminas. Applied Catalysis A: General, 2018, 556, 1-9.	2.2	87
70	Adsorption of biomolecules in porous silicas modified with zirconium. Effect of the textural properties and acidity. Microporous and Mesoporous Materials, 2018, 260, 146-154.	2.2	8
71	Effect of the treatment with H3PO4 on the catalytic activity of Nb2O5 supported on Zr-doped mesoporous silica catalyst. Case study: Glycerol dehydration. Applied Catalysis B: Environmental, 2018, 221, 158-168.	10.8	52
72	Porous clays heterostructures as supports of iron oxide for environmental catalysis. Chemical Engineering Journal, 2018, 334, 1159-1168.	6.6	48

#	Article	IF	CITATIONS
73	Influence of buffer solutions in the adsorption of human serum proteins onto layered double hydroxide. International Journal of Biological Macromolecules, 2018, 106, 396-409.	3.6	23
74	Separation of Light Liquid Paraffin C5–C9 with Cuban Volcanic Glass Previously Used in Copper Elimination from Water Solutions. Applied Sciences (Switzerland), 2018, 8, 295.	1.3	6
75	Influence of the Structure and Experimental Surfaces Modifications of 2:1 Clay Minerals on the Adsorption Properties of Methylene Blue. Minerals (Basel, Switzerland), 2018, 8, 359.	0.8	10
76	Selective Oxidation of Hydrogen Sulfide to Sulfur Using Vanadium Oxide Supported on Porous Clay Heterostructures (PCHs) Formed by Pillars Silica, Silica-Zirconia or Silica-Titania. Materials, 2018, 11, 1562.	1.3	24
77	Natural and Modified Montmorillonite Clays as Catalysts for Synthesis of Biolubricants. Materials, 2018, 11, 1764.	1.3	36
78	Microwave-Assisted Acid Activation of Clays Composed of 2:1 Clay Minerals: A Comparative Study. Minerals (Basel, Switzerland), 2018, 8, 376.	0.8	12
79	Porous Silicon-Based Catalysts for the Dehydration of Glycerol to High Value-Added Products. Materials, 2018, 11, 1569.	1.3	8
80	Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 Capture. Journal of Environmental Chemical Engineering, 2018, 6, 4573-4587.	3.3	60
81	Promotion effect of Ce or Zn oxides for improving furfuryl alcohol yield in the furfural hydrogenation using inexpensive Cu-based catalysts. Molecular Catalysis, 2018, 455, 121-131.	1.0	40
82	Gas-phase hydrogenation of furfural over Cu/CeO2 catalysts. Catalysis Today, 2017, 279, 327-338.	2.2	73
83	Assessment of commercial resins in the biolubricants production from free fatty acids of castor oil. Catalysis Today, 2017, 279, 274-285.	2.2	29
84	Microwave-assisted nitric acid treatment of sepiolite and functionalization with polyethylenimine applied to CO2 capture and CO2/N2 separation. Applied Surface Science, 2017, 410, 315-325.	3.1	43
85	Amino-modified pillared adsorbent from water-treatment solid wastes applied to CO2/N2 separation. Adsorption, 2017, 23, 405-421.	1.4	16
86	Selective Production of 2â€Methylfuran by Gasâ€Phase Hydrogenation of Furfural on Copper Incorporated by Complexation in Mesoporous Silica Catalysts. ChemSusChem, 2017, 10, 1448-1459.	3.6	49
87	Selective Furfural Hydrogenation to Furfuryl Alcohol Using Cu-Based Catalysts Supported on Clay Minerals. Topics in Catalysis, 2017, 60, 1040-1053.	1.3	42
88	Evaluation of porous clay heterostructures modified with amine species as adsorbent for the CO2 capture. Microporous and Mesoporous Materials, 2017, 249, 25-33.	2.2	63
89	Glycerol oligomers production by etherification using calcined eggshell as catalyst. Molecular Catalysis, 2017, 433, 282-290.	1.0	28
90	CoxPy Catalysts in HDO of Phenol and Dibenzofuran: Effect of P content. Topics in Catalysis, 2017, 60, 1094-1107.	1.3	17

#	Article	IF	CITATIONS
91	Synthesis of biolubricants by the esterification of free fatty acids from castor oil with branched alcohols using cationic exchange resins as catalysts. Industrial Crops and Products, 2017, 104, 52-61.	2.5	55
92	Influence of pore size and loading for Nb 2 O 5 /SBA-15 catalysts on synthetic ester production from free fatty acids of castor oil. Molecular Catalysis, 2017, 436, 267-275.	1.0	16
93	Aluminum doped mesoporous silica SBA-15 for glycerol dehydration to value-added chemicals. Journal of Sol-Gel Science and Technology, 2017, 83, 342-354.	1.1	9
94	Ni and Fe mixed phosphides catalysts for O-removal of a bio-oil model molecule from lignocellulosic biomass. Molecular Catalysis, 2017, 437, 130-139.	1.0	33
95	Nickel Phosphide/Silica Catalysts for the Gasâ€Phase Hydrogenation of Furfural to High–Added–Value Chemicals. ChemCatChem, 2017, 9, 2881-2889.	1.8	36
96	Benzothiophene adsorption on M/SBAâ€15 and M/SBAâ€15/NH ₄ F modified (M = Fe or Co) phase batch system. Canadian Journal of Chemical Engineering, 2017, 95, 2315-2323.	in liquid	6
97	Adsorption study of reactive dyes onto porous clay heterostructures. Applied Clay Science, 2017, 135, 35-44.	2.6	80
98	Total Oxidation of Propane Using CeO2 and CuO-CeO2 Catalysts Prepared Using Templates of Different Nature. Catalysts, 2017, 7, 96.	1.6	39
99	Catalytic Behaviour of CuO-CeO2 Systems Prepared by Different Synthetic Methodologies in the CO-PROX Reaction under CO2-H2O Feed Stream. Catalysts, 2017, 7, 160.	1.6	26
100	Relevance of the Physicochemical Properties of Calcined Quail Eggshell (CaO) as a Catalyst for Biodiesel Production. Journal of Chemistry, 2017, 2017, 1-12.	0.9	37
101	Adsorption behavior of bovine serum albumin on Zn–Al and Mg–Al layered double hydroxides. Journal of Sol-Gel Science and Technology, 2016, 80, 748-758.	1.1	19
102	Functionalization of hollow silica microspheres by impregnation or grafted of amine groups for the CO2 capture. International Journal of Greenhouse Gas Control, 2016, 52, 344-356.	2.3	59
103	Enhanced HDO activity of Ni2P promoted with noble metals. Catalysis Science and Technology, 2016, 6, 7323-7333.	2.1	30
104	The effect of structure modifying agents in the SBA-15 for its application in the biomolecules adsorption. Microporous and Mesoporous Materials, 2016, 232, 53-64.	2.2	48
105	WO 3 -based catalysts supported on porous clay heterostructures (PCH) with Si–Zr pillars for synthetic esters production. Applied Clay Science, 2016, 124-125, 69-78.	2.6	35
106	Effectiveness of microwave assisted acid treatment on dioctahedral and trioctahedral smectites. The influence of octahedral composition. Applied Clay Science, 2016, 120, 70-80.	2.6	38
107	WO3 supported on Zr doped mesoporous SBA-15 silica for glycerol dehydration to acrolein. Applied Catalysis A: General, 2016, 516, 30-40.	2.2	37
108	Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts. Journal of Catalysis, 2016, 336, 107-115.	3.1	180

#	Article	IF	CITATIONS
109	Freeze-dried Co 3 O 4 –CeO 2 catalysts for the preferential oxidation of CO with the presence of CO 2 and H 2 O in the feed. Ceramics International, 2016, 42, 7462-7474.	2.3	30
110	Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catalysis Science and Technology, 2016, 6, 3419-3429.	2.1	38
111	A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties. Chemical Papers, 2016, 70, .	1.0	2
112	Catalytic performance of CoMo/Al2O3-MgO-Li(x) formulations in DBT hydrodesulfurization. Catalysis Today, 2016, 271, 35-44.	2.2	24
113	Vanadium oxide supported on porous clay heterostructure for the partial oxidation of hydrogen sulphide to sulfur. Catalysis Today, 2015, 254, 36-42.	2.2	32
114	CO2/CH4 adsorption separation process using pore expanded mesoporous silicas functionalizated by APTES grafting. Adsorption, 2015, 21, 565-575.	1.4	29
115	V and V–P containing Zr-SBA-15 catalysts for dehydration of glycerol to acrolein. Catalysis Today, 2015, 254, 43-52.	2.2	38
116	Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production. Chemical Engineering Journal, 2015, 269, 35-43.	6.6	101
117	Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine. Materials Research Bulletin, 2015, 70, 663-672.	2.7	22
118	Hydrodesulfurization of dibenzothiophene over PtMo/MCM-48 catalysts. Catalysis Communications, 2015, 69, 217-222.	1.6	18
119	"Low Cost―Pore Expanded SBA-15 Functionalized with Amine Groups Applied to CO2 Adsorption. Materials, 2015, 8, 2495-2513.	1.3	48
120	Nickel and cobalt phosphides as effective catalysts for oxygen removal of dibenzofuran: role of contact time, hydrogen pressure and hydrogen/feed molar ratio. Catalysis Science and Technology, 2015, 5, 3403-3415.	2.1	79
121	The influence of promoters (Zr, La, Tb, Pr) on the catalytic performance of CuO-CeO2 systems for the preferential oxidation of CO in the presence of CO2 and H2O. Catalysis Today, 2015, 253, 115-125.	2.2	38
122	Hydrodechlorination of polychlorinated molecules using transition metal phosphide catalysts. Journal of Hazardous Materials, 2015, 296, 112-119.	6.5	16
123	Characterization and performance in preferential oxidation of CO of CuO–CeO2 catalysts synthesized using polymethyl metacrylate (PMMA) as template. International Journal of Hydrogen Energy, 2015, 40, 11254-11260.	3.8	23
124	Influence of the niobium supported species on the catalytic dehydration of glycerol to acrolein. Applied Catalysis B: Environmental, 2015, 179, 139-149.	10.8	60
125	CuO-CeO2 supported on montmorillonite-derived porous clay heterostructures (PCH) for preferential CO oxidation in H2-rich stream. Catalysis Today, 2015, 253, 126-136.	2.2	57
126	CO2 adsorption on amine modified mesoporous silicas: Effect of the progressive disorder of the honeycomb arrangement. Microporous and Mesoporous Materials, 2015, 209, 172-183.	2.2	96

#	Article	IF	CITATIONS
127	Calcium/chitosan spheres as catalyst for biodiesel production. Polymer International, 2015, 64, 242-249.	1.6	19
128	CO2 adsorption on APTES functionalized mesocellular foams obtained from mesoporous silicas. Microporous and Mesoporous Materials, 2014, 187, 125-134.	2.2	73
129	Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresource Technology, 2014, 151, 207-213.	4.8	169
130	Microwave assisted acid treatment of sepiolite: The role of composition and "crystallinity― Applied Clay Science, 2014, 102, 15-27.	2.6	52
131	Comparative study of CuO supported on CeO2, Ce0.8Zr0.2O2 andÂCe0.8Al0.2O2 based catalysts in the CO-PROX reaction. International Journal of Hydrogen Energy, 2014, 39, 4102-4108.	3.8	41
132	Gas phase catalytic hydrodechlorination of chlorobenzene over cobalt phosphide catalysts with different P contents. Journal of Hazardous Materials, 2013, 260, 167-175.	6.5	32
133	Montmorillonite based porous clay heterostructures: Influence of Zr in the structure and acidic properties. Microporous and Mesoporous Materials, 2013, 176, 95-102.	2.2	57
134	Influence of the silica support on the activity of Ni and Ni2P based catalysts in the hydrodechlorination of chlorobenzene. Study of factors governing catalyst deactivation. Journal of Molecular Catalysis A, 2013, 368-369, 78-87.	4.8	65
135	Oxygen-removal of dibenzofuran as a model compound in biomass derived bio-oil on nickel phosphide catalysts: Role of phosphorus. Applied Catalysis B: Environmental, 2013, 136-137, 140-149.	10.8	185
136	Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound. Journal of Catalysis, 2012, 294, 184-198.	3.1	214
137	Ni2P and CoP catalysts prepared from phosphite-type precursors for HDS–HDN competitive reactions. Applied Catalysis A: General, 2010, 390, 253-263.	2.2	90
138	Influences of winery–distillery waste compost stability and soil type on soil carbon dynamics in amended soils. Waste Management, 2010, 30, 1966-1975.	3.7	56
139	A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene. Journal of Catalysis, 2009, 263, 4-15.	3.1	214
140	Dibenzothiophene hydrodesulfurization over cobalt phosphide catalysts prepared through a new synthetic approach: Effect of the support. Applied Catalysis B: Environmental, 2009, 92, 100-113.	10.8	97
141	The Influence of the Support on the Formation of Ni ₂ P Based Catalysts by a New Synthetic Approach. Study of the Catalytic Activity in the Hydrodesulfurization of Dibenzothiophene. Journal of Physical Chemistry C, 2009, 113, 17032-17044.	1.5	72
142	Volcanic Glass and its Uses as Adsorbent. , 0, , .		2
143	Design of Activated Carbons from the Cellulose Fraction of Agricultural Waste. Applications in Selective Separation and Storage of Gases. SSRN Electronic Journal, 0, , .	0.4	0
144	Oxidative Condensation of Furfural with Ethanol Using Preformed AU Colloidal Nanoparticles. Impact of Stabilizer and Heat Treatment Protocols on Catalytic Activity and Stability. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
145	Highly Dispersed Copper Oxide on Silica: Towards an Efficient Catalyst for Continuous Glycerol Dehydration to Acetol. SSRN Electronic Journal, 0, , .	0.4	0