Hyeon Jeong Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3553211/publications.pdf Version: 2024-02-01

		687335	839512
32	1,457	13	18
papers	citations	h-index	g-index
35	35	35	2797
all docs	docs citations	times ranked	citing authors

HVEON LEONG LEE

#	Article	IF	CITATIONS
1	Background-free stimulated Raman scattering imaging by manipulating photons in the spectral domain. , 2022, , 137-146.		2
2	Stimulated Raman voltage imaging for quantitative mapping of membrane potential. , 2022, , 487-499.		0
3	Ultrasensitive Vibrational Imaging of Retinoids by Visible Preresonance Stimulated Raman Scattering Microscopy. Advanced Science, 2021, 8, 2003136.	11.2	21
4	Stimulated Raman voltage imaging for quantitative mapping of membrane potential. , 2021, , .		0
5	Robust single-cell classification in hyperspectral stimulated raman scattering imaging by machine learning. , 2021, , .		0
6	High-content, high-throughput imaging of single-cell metabolism by sub-sampled hyperspectral SRS microscopy. , 2021, , .		0
7	Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning. Nature Communications, 2021, 12, 3052.	12.8	58
8	Machine-learning-mediated single-cell classification by hyperspectral stimulated Raman scattering imaging. , 2021, , .		1
9	Multimodal Metabolic Imaging Reveals Pigment Reduction and Lipid Accumulation in Metastatic Melanoma. BME Frontiers, 2021, 2021, .	4.5	16
10	Mitochondrial Fatty Acid Oxidation Is Not Vital for Melanoma Cell Proliferation and Migration. Current Developments in Nutrition, 2020, 4, nzaa044_013.	0.3	0
11	Optoacoustic brain stimulation at submillimeter spatial precision. Nature Communications, 2020, 11, 881.	12.8	47
12	Functionalized NIRâ€II Semiconducting Polymer Nanoparticles for Singleâ€cell to Wholeâ€Organ Imaging of PSMAâ€Positive Prostate Cancer. Small, 2020, 16, e2001215.	10.0	34
13	Stimulated Raman voltage imaging for quantitative mapping of membrane potential. , 2020, , .		0
14	Electronic Preresonance Stimulated Raman Scattering Imaging of Red-Shifted Proteorhodopsins: Toward Quantitation of the Membrane Potential. Journal of Physical Chemistry Letters, 2019, 10, 4374-4381.	4.6	9
15	Label-free optical imaging of membrane potential. Current Opinion in Biomedical Engineering, 2019, 12, 118-125.	3.4	13
16	Label-Free Stimulated Raman Scattering Imaging of Neuronal Membrane Potential. , 2019, , 107-122.		3
17	High-speed, high-sensitivity spectroscopic stimulated Raman scattering microscopy by ultrafast delay-line tuning and deep learning. , 2019, , .		1
18	Pre-resonance stimulated Raman scattering spectroscopy and imaging of membrane potential using near-infrared rhodopsins. , 2019, , .		2

Hyeon Jeong Lee

#	Article	IF	CITATIONS
19	Cholesterol esterification inhibition suppresses prostate cancer metastasis by impairing the Wnt/ \hat{l}^2 -catenin pathway (Conference Presentation). , 2019, , .		0
20	Cholesterol Esterification Inhibition Suppresses Prostate Cancer Metastasis by Impairing the Wnt/β-catenin Pathway. Molecular Cancer Research, 2018, 16, 974-985.	3.4	52
21	Label-Free Vibrational Spectroscopic Imaging of Neuronal Membrane Potential. Journal of Physical Chemistry Letters, 2017, 8, 1932-1936.	4.6	48
22	Semiconducting Polymer Nanoparticles for Centimetersâ€Deep Photoacoustic Imaging in the Second Nearâ€Infrared Window. Advanced Materials, 2017, 29, 1703403.	21.0	136
23	Imaging chemistry inside living cells by stimulated Raman scattering microscopy. Methods, 2017, 128, 119-128.	3.8	39
24	Assessing Cholesterol Storage in Live Cells and C. elegans by Stimulated Raman Scattering Imaging of Phenyl-Diyne Cholesterol. Scientific Reports, 2015, 5, 7930.	3.3	122
25	Synthetic aperture microscopy based on referenceless phase retrieval with an electrically tunable lens. Applied Optics, 2015, 54, 5346.	2.1	11
26	Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons. Science Advances, 2015, 1, e1500738.	10.3	88
27	Label-free spectroscopic detection of membrane potential using stimulated Raman scattering. Applied Physics Letters, 2015, 106, .	3.3	44
28	Label-Free Imaging of Single Neuron Activities by Stimulated Raman Scattering. , 2015, , .		0
29	Abstract A06: Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Molecular Cancer Therapeutics, 2015, 14, A06-A06.	4.1	1
30	Cholesteryl Ester Accumulation Induced by PTEN Loss and PI3K/AKT Activation Underlies Human Prostate Cancer Aggressiveness. Cell Metabolism, 2014, 19, 393-406.	16.2	671
31	Imaging Cytoplasmic Lipid Droplets in Enterocytes and Assessing Dietary Fat Absorption. Methods in Cell Biology, 2013, 116, 151-166.	1.1	11
32	hPuf-A/KIAA0020 Modulates PARP-1 Cleavage upon Genotoxic Stress. Cancer Research, 2011, 71, 1126-1134.	0.9	22