Ketul C Popat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3553136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Micro-Electric Discharge Machining-Induced Surface Modification on Biomedical Ti-6Al-4V Alloy. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2022, 144, .	1.3	16
2	Rod-shaped keratin nanoparticles extracted from human hair by acid hydrolysis as photothermally triggered berberine delivery system. Advanced Powder Technology, 2022, 33, 103353.	2.0	7
3	Balloon expandable coronary stent materials: a systematic review focused on clinical success. In Vitro Models, 2022, 1, 151-175.	1.0	7
4	A tannin-polymer adsorbent created from the freezing-thawing method for removal of metal-complex acid black 172 and methylene blue from aqueous solutions. Journal of Molecular Liquids, 2022, 351, 118682.	2.3	6
5	Enhanced antibacterial properties on superhydrophobic microâ€nano structured titanium surface. Journal of Biomedical Materials Research - Part A, 2022, 110, 1314-1328.	2.1	22
6	Composite filter with antimicrobial and anti-adhesive properties based on electrospun poly(butylene) Tj ETQq0 0 Journal of Membrane Science, 2022, 650, 120426.	0 rgBT /O 4.1	verlock 10 T 9
7	Bone morphogenetic proteinâ€2 delivery from polyelectrolyte multilayers enhances osteogenic activity on nanostructured titania. Journal of Biomedical Materials Research - Part A, 2021, 109, 1173-1182.	2.1	10
8	Improved hemocompatibility and reduced bacterial adhesion on superhydrophobic titania nanoflower surfaces. Materials Science and Engineering C, 2021, 119, 111503.	3.8	33
9	Tanfloc/heparin polyelectrolyte multilayers improve osteogenic differentiation of adipose-derived stem cells on titania nanotube surfaces. Carbohydrate Polymers, 2021, 251, 117079.	5.1	34
10	Biocompatible Crosslinked Nanofibers of Poly(Vinyl Alcohol)/Carboxymethylâ€Kappaâ€Carrageenan Produced by a Green Process. Macromolecular Bioscience, 2021, 21, e2000292.	2.1	19
11	Antithrombogenic properties of <i>Tulbaghia violacea</i> aqueous leaf extracts: assessment of platelet activation and whole blood clotting kinetics. RSC Advances, 2021, 11, 30455-30464.	1.7	2
12	Surface modification strategies to improve titanium hemocompatibility: a comprehensive review. Materials Advances, 2021, 2, 5824-5842.	2.6	33
13	Bloodâ€Compatible Materials: Vascular Endotheliumâ€Mimetic Surfaces that Mitigate Multiple Cellâ€Material Interactions. Advanced Healthcare Materials, 2021, 10, e2001748.	3.9	6
14	Nanofibers and Nanosurfaces. Springer Series in Biomaterials Science and Engineering, 2021, , 107-130.	0.7	4
15	Dynamics of long-term protein aggregation on low-fouling surfaces. Journal of Colloid and Interface Science, 2021, 589, 356-366.	5.0	8
16	Gentamicin-Releasing Titania Nanotube Surfaces Inhibit Bacteria and Support Adipose-Derived Stem Cell Growth in Cocultures. ACS Applied Bio Materials, 2021, 4, 4936-4945.	2.3	4
17	Zein supports scaffolding capacity toward mammalian cells and bactericidal and antiadhesive properties on poly(Îμ-caprolactone)/zein electrospun fibers. Materials Today Chemistry, 2021, 20, 100465.	1.7	11
18	Antimicrobial and cytocompatible chitosan, N,N,N-trimethyl chitosan, and tanfloc-based polyelectrolyte multilayers on gellan gum films. International Journal of Biological Macromolecules, 2021, 183, 727-742.	3.6	22

#	Article	IF	CITATIONS
19	Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review. International Journal of Biological Macromolecules, 2021, 183, 564-588.	3.6	63
20	Hydrothermally treated titanium surfaces for enhanced osteogenic differentiation of adipose derived stem cells. Materials Science and Engineering C, 2021, 128, 112315.	3.8	13
21	Synthesis and characterization of self-organized TiO2 nanotubes grown on Ti-15Zr alloy surface to enhance cell response. Surfaces and Interfaces, 2021, 26, 101439.	1.5	9
22	Surface Modification of Medical-Grade Ni55.6Ti44.4 alloy via enhanced machining characteristics of Zn Powder Mixed-μ-EDM. Surface and Coatings Technology, 2021, 425, 127725.	2.2	15
23	Manganese-containing bioactive glass enhances osteogenic activity of TiO2 nanotube arrays. Applied Surface Science, 2021, 570, 151163.	3.1	10
24	Enhanced blood coagulation and antibacterial activities of carboxymethyl-kappa-carrageenan-containing nanofibers. Carbohydrate Polymers, 2021, 273, 118541.	5.1	19
25	The Effect of Anterior Cruciate Ligament Reconstruction with an Electropsun Scaffold on Tibiofemoral Contact Mechanics. Annals of Biomedical Engineering, 2021, 49, 3748-3759.	1.3	0
26	Performance Investigation of Cryo-treated End Mill on the Mechanical and in vitro behavior of Hybrid-lubri-coolant-milled Ti-6Al-4V alloy. Journal of Manufacturing Processes, 2021, 71, 472-488.	2.8	8
27	Smart Mn7+ Sensing via Quenching on Dual Fluorescence of Eu3+ Complex-Modified TiO2 Nanoparticles. Nanomaterials, 2021, 11, 3283.	1.9	3
28	Chitosan/gellan gum ratio content into blends modulates the scaffolding capacity of hydrogels on bone mesenchymal stem cells. Materials Science and Engineering C, 2020, 106, 110258.	3.8	42
29	Poly(vinyl alcohol)/cationic tannin blend films with antioxidant and antimicrobial activities. Materials Science and Engineering C, 2020, 107, 110357.	3.8	30
30	Protein adsorption measurements on low fouling and ultralow fouling surfaces: A critical comparison of surface characterization techniques. Acta Biomaterialia, 2020, 102, 169-180.	4.1	24
31	Chitosan/iota-carrageenan and chitosan/pectin polyelectrolyte multilayer scaffolds with antiadhesive and bactericidal properties. Applied Surface Science, 2020, 502, 144282.	3.1	61
32	Enhanced hemocompatibility and antibacterial activity on titania nanotubes with tanfloc/heparin polyelectrolyte multilayers. Journal of Biomedical Materials Research - Part A, 2020, 108, 992-1005.	2.1	40
33	Pectin-capped gold nanoparticles synthesis in-situ for producing durable, cytocompatible, and superabsorbent hydrogel composites with chitosan. International Journal of Biological Macromolecules, 2020, 147, 138-149.	3.6	36
34	Phosphorylation of chitosan to improve osteoinduction of chitosan/xanthan-based scaffolds for periosteal tissue engineering. International Journal of Biological Macromolecules, 2020, 143, 619-632.	3.6	61
35	Properties of a commercial l̂º-carrageenan food ingredient and its durable superabsorbent hydrogels. Carbohydrate Research, 2020, 487, 107883.	1.1	49
36	Bactericidal Pectin/Chitosan/Glycerol Films for Food Pack Coatings: A Critical Viewpoint. International Journal of Molecular Sciences, 2020, 21, 8663.	1.8	23

#	Article	IF	CITATIONS
37	Crystallinity of TiO2 nanotubes and its effects on fibroblast viability, adhesion, and proliferation. Journal of Materials Science: Materials in Medicine, 2020, 31, 94.	1.7	8
38	Synthesis of Eu-modified luminescent Titania nanotube arrays and effect of voltage on morphological, structural and spectroscopic properties. Materials Science in Semiconductor Processing, 2020, 113, 105026.	1.9	7
39	Nanoporous layer formation on the Ti10Mo8Nb alloy surface using anodic oxidation. Surface and Coatings Technology, 2020, 386, 125467.	2.2	15
40	Impact of superhydrophobicity on the fluid dynamics of a bileaflet mechanical heart valve. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103895.	1.5	8
41	Resorbable bacterial cellulose membranes with strontium release for guided bone regeneration. Materials Science and Engineering C, 2020, 116, 111175.	3.8	27
42	Removal of Cu(II) from aqueous solutions imparted by a pectin-based film: Cytocompatibility, antimicrobial, kinetic, and equilibrium studies. International Journal of Biological Macromolecules, 2020, 152, 77-89.	3.6	15
43	Antithrombogenic properties of <i>Tulbaghia violacea–</i> loaded polycaprolactone nanofibers. Journal of Bioactive and Compatible Polymers, 2020, 35, 102-116.	0.8	8
44	Carboxymethyl-kappa-carrageenan: A study of biocompatibility, antioxidant and antibacterial activities. International Journal of Biological Macromolecules, 2020, 152, 483-491.	3.6	70
45	Polycationic condensed tannin/polysaccharide-based polyelectrolyte multilayers prevent microbial adhesion and proliferation. European Polymer Journal, 2020, 130, 109677.	2.6	32
46	Polyelectrolyte multilayers containing a tannin derivative polyphenol improve blood compatibility through interactions with platelets and serum proteins. Materials Science and Engineering C, 2020, 112, 110919.	3.8	29
47	Cell investigation into the biocompatibility of adult human dermal fibroblasts with PCL nanofibers/TiO ₂ nanotubes on the surface of Ti–30Ta alloy for biomedical applications. Artificial Organs, 2020, 44, 877-882.	1.0	10
48	Annealing Temperature Effect on Tribocorrosion and Biocompatibility Properties of TiO2 Nanotubes. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	1.2	13
49	In Vitro Investigation of Hemocompatibility of Hydrothermally Treated Titanium and Titanium Alloy Surfaces. ACS Omega, 2020, 5, 8108-8120.	1.6	35
50	Coated Surface on Ti-30Ta Alloy for Biomedical Application: Mechanical and in-vitro Characterization. Materials Research, 2020, 23, .	0.6	3
51	Evaluating Whole Blood Clotting in vitro on Biomaterial Surfaces. Bio-protocol, 2020, 10, e3505.	0.2	22
52	Evaluation of chlorhexidine /polydopamine antimicrobial coatings on the Ti-7.5 Mo alloy surface - in vitro studies. International Journal of Advanced Engineering Research and Science, 2020, 7, 299-307.	0.0	0
53	Europium-functionalized luminescent titania nanotube arrays: Utilizing interactions with glucose, cholesterol and triglycerides for rapid detection application. Materials Science and Engineering C, 2020, 114, 111054.	3.8	2
54	Polysaccharide-based tissue-engineered vascular patches. Materials Science and Engineering C, 2019, 104, 109973.	3.8	12

#	Article	IF	CITATIONS
55	The quest for blood-compatible materials: Recent advances and future technologies. Materials Science and Engineering Reports, 2019, 138, 118-152.	14.8	66
56	Interaction of blood plasma proteins with superhemophobic titania nanotube surfaces. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102046.	1.7	27
57	Novel cationic tannin/glycosaminoglycan-based polyelectrolyte multilayers promote stem cells adhesion and proliferation. RSC Advances, 2019, 9, 25836-25846.	1.7	33
58	Chitosan/iota-carrageenan/curcumin-based materials performed by precipitating miscible solutions prepared in ionic liquid. Journal of Molecular Liquids, 2019, 290, 111199.	2.3	26
59	Effect of crystalline phases of titania nanotube arrays on adipose derived stem cell adhesion and proliferation. Materials Science and Engineering C, 2019, 103, 109850.	3.8	21
60	Hemocompatibility of super-repellent surfaces: current and future. Materials Horizons, 2019, 6, 1596-1610.	6.4	30
61	Adhesion and Proliferation of Human Adipose-Derived Stem Cells on Titania Nanotube Surfaces. Regenerative Engineering and Translational Medicine, 2019, 5, 435-445.	1.6	7
62	Effects of titania nanotube surfaces on osteogenic differentiation of human adipose-derived stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 380-390.	1.7	24
63	Mechanically-enhanced polysaccharide-based scaffolds for tissue engineering of soft tissues. Materials Science and Engineering C, 2019, 94, 364-375.	3.8	41
64	Mechanical properties of a hierarchical electrospun scaffold for ovine anterior cruciate ligament replacement. Journal of Orthopaedic Research, 2019, 37, 421-430.	1.2	7
65	In Vitro Cell Adhesion, Proliferation and Differentiation of Adipose Derived Stem Cells on Tulbaghia violacea Loaded Polycaprolactone (PCL) Nanofibers. Journal of Biomaterials and Tissue Engineering, 2019, 9, 1485-1498.	0.0	2
66	Novel poly(ε-caprolactone)/amino-functionalized tannin electrospun membranes as scaffolds for tissue engineering. Journal of Colloid and Interface Science, 2018, 525, 21-30.	5.0	70
67	Atomic force microscopy of adsorbed proteoglycan mimetic nanoparticles: Toward new glycocalyx-mimetic model surfaces. Carbohydrate Polymers, 2018, 190, 346-355.	5.1	22
68	Antibacterial activity on superhydrophobic titania nanotube arrays. Colloids and Surfaces B: Biointerfaces, 2018, 166, 179-186.	2.5	68
69	Hemocompatibility of hyaluronan enhanced linear low density polyethylene for blood contacting applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1964-1975.	1.6	19
70	Development of a new quaternary alloy Ti–25Ta–25Nb–3Sn for biomedical applications. Materials Research Express, 2018, 5, 025402.	0.8	13
71	Cell and Bacteria-Baterial Interactions on the Ti10Mo8Nb Alloy After Surface Modification. Materials Research, 2018, 21, .	0.6	6
72	Effects of calcium and phosphorus incorporation on the properties and bioactivity of TiO ₂ nanotubes. Journal of Biomaterials Applications, 2018, 33, 410-421.	1.2	11

#	Article	IF	CITATIONS
73	Nitric oxide-mediated fibrinogen deposition prevents platelet adhesion and activation. Biointerphases, 2018, 13, 06E403.	0.6	19
74	Nanostructured Surfaces That Mimic the Vascular Endothelial Glycocalyx Reduce Blood Protein Adsorption and Prevent Fibrin Network Formation. ACS Applied Materials & Interfaces, 2018, 10, 31892-31902.	4.0	35
75	Incorporation of silver nanoparticles on Ti7.5Mo alloy surface containing TiO2 nanotubes arrays for promoting antibacterial coating – In vitro and in vivo study. Applied Surface Science, 2018, 455, 780-788.	3.1	17
76	Pectin-chitosan membrane scaffold imparts controlled stem cell adhesion and proliferation. Carbohydrate Polymers, 2018, 197, 47-56.	5.1	99
77	Bactericidal activity and cytotoxicity of a zinc doped PEO titanium coating. Thin Solid Films, 2018, 660, 477-483.	0.8	24
78	Bioactive and antibacterial boron doped TiO2 coating obtained by PEO. Applied Surface Science, 2018, 458, 49-58.	3.1	36
79	Modification of the Ti15Mo alloy surface through TiO ₂ nanotube growth—an in vitro study. Journal of Applied Biomaterials and Functional Materials, 2018, 16, 222-229.	0.7	4
80	Hemodynamic Performance and Thrombogenic Properties of a Superhydrophobic Bileaflet Mechanical Heart Valve. Annals of Biomedical Engineering, 2017, 45, 452-463.	1.3	44
81	In-vitro cell adhesion and proliferation of adipose derived stem cell on hydroxyapatite composite surfaces. Materials Science and Engineering C, 2017, 75, 1305-1316.	3.8	30
82	Hierarchically Structured Electrospun Scaffolds with Chemically Conjugated Growth Factor for Ligament Tissue Engineering. Tissue Engineering - Part A, 2017, 23, 823-836.	1.6	30
83	Immobilisation of apatite on Ti30Ta alloy surface by electrospinning of PCL. Surface Innovations, 2017, 5, 68-74.	1.4	4
84	Hemocompatibility of Superhemophobic Titania Surfaces. Advanced Healthcare Materials, 2017, 6, 1600717.	3.9	65
85	Superhemophobic titania nanotube array surfaces for blood contacting medical devices. RSC Advances, 2017, 7, 35466-35476.	1.7	34
86	Response to "Correspondence Concerning Hemocompatibility of Superhemophobic Titania Surfaces― Advanced Healthcare Materials, 2017, 6, 1700647.	3.9	8
87	Metallic superhydrophobic surfaces via thermal sensitization. Applied Physics Letters, 2017, 110, .	1.5	26
88	Glycocalyx-Inspired Nitric Oxide-Releasing Surfaces Reduce Platelet Adhesion and Activation on Titanium. ACS Biomaterials Science and Engineering, 2017, 3, 68-77.	2.6	51
89	Zwitterionic Polymeric Materials. , 2017, , 1661-1672.		0
90	Design and Biological Applications of Nanostructured Poly(Ethylene Glycol) Films. , 2017, , 531-560.		0

#	Article	IF	CITATIONS
91	Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and geometry. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 258-270.	1.5	94
92	Endothelial Cell Growth and Differentiation on Collagen-Immobilized Polycaprolactone Nanowire Surfaces. Journal of Biomedical Nanotechnology, 2015, 11, 1080-1092.	0.5	7
93	Titania nanotube arrays as interfaces for neural prostheses. Materials Science and Engineering C, 2015, 49, 735-745.	3.8	25
94	Titania nanostructures: a biomedical perspective. RSC Advances, 2015, 5, 37149-37171.	1.7	48
95	Application of the skin and bone integrated pylon with titanium oxide nanotubes and seeded with dermal fibroblasts. Prosthetics and Orthotics International, 2015, 39, 477-486.	0.5	9
96	Smooth Muscle Cell Functionality on Collagen Immobilized Polycaprolactone Nanowire Surfaces. Journal of Functional Biomaterials, 2014, 5, 58-77.	1.8	17
97	Increased Adipogenic and Decreased Chondrogenic Differentiation of Adipose Derived Stem Cells on Nanowire Surfaces. Materials, 2014, 7, 2605-2630.	1.3	24
98	Direct co-culture of endothelial and smooth muscle cells on poly(ε-caprolactone) nanowire surfaces. RSC Advances, 2014, 4, 57929-57934.	1.7	2
99	Effects of pore size, implantation time, and nanoâ€surface properties on rat skin ingrowth into percutaneous porous titanium implants. Journal of Biomedical Materials Research - Part A, 2014, 102, 1305-1315.	2.1	34
100	Interaction between mesenchymal stem cells and Tiâ€30Ta alloy after surface treatment. Journal of Biomedical Materials Research - Part A, 2014, 102, 2147-2156.	2.1	18
101	Hemocompatibility and Hemodynamics of Novel Hyaluronan–Polyethylene Materials for Flexible Heart Valve Leaflets. Cardiovascular Engineering and Technology, 2014, 5, 70-81.	0.7	34
102	Nanostructured Biomaterials from Electrospun Demineralized Bone Matrix: A Survey of Processing and Crosslinking Strategies. ACS Applied Materials & amp; Interfaces, 2014, 6, 9328-9337.	4.0	32
103	Improved in Vitro Blood Compatibility of Polycaprolactone Nanowire Surfaces. ACS Applied Materials & Interfaces, 2014, 6, 15913-15924.	4.0	39
104	Surface modification of Ti–13Nb–13Zr and Ti–6Al–4V using electrophoretic deposition (EPD) for enhanced cellular interaction. Materials Technology, 2014, 29, B54-B58.	1.5	10
105	Antithrombogenic properties of a nitric oxide-releasing dextran derivative: evaluation of platelet activation and whole blood clotting kinetics. RSC Advances, 2013, 3, 24406.	1.7	25
106	Alumina. , 2013, , 162-166.		2
107	Electrohydrodynamic atomization technique for applying phospholipid coatings to titanium implant materials. Materials Letters, 2013, 97, 81-85.	1.3	12
108	Reduced in vitro immune response on titania nanotube arrays compared to titanium surface. Biomaterials Science, 2013, 1, 322-332.	2.6	66

#	Article	IF	CITATIONS
109	Hemocompatibility of polymeric nanostructured surfaces. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1529-1548.	1.9	48
110	Micro-Patterned Nanowire Surfaces Encourage Directional Neural Progenitor Cell Adhesion and Proliferation. Journal of Biomedical Nanotechnology, 2013, 9, 1698-1706.	0.5	7
111	Osteogenic Differentiation of Adipose Derived Stem Cells on Polycaprolactone Nanowire Surfaces. Journal of Biomaterials and Tissue Engineering, 2013, 3, 542-553.	0.0	2
112	Surface Modification on Ti-30Ta Alloy for Biomedical Application. Engineering, 2013, 05, 707-713.	0.4	18
113	Titania Nanotube Arrays as Interfaces for Blood-Contacting Implantable Devices: A Study Evaluating the Nanotopography-Associated Activation and Expression of Blood Plasma Components. Journal of Biomedical Nanotechnology, 2012, 8, 642-658.	0.5	25
114	Nanotopography Driven Mesenchymal Stem Cell Differentiation and Proliferation. Biophysical Journal, 2012, 102, 705a-706a.	0.2	0
115	Low energy helium ion texturization of titanium and relevance to biomedical applications. Surface and Coatings Technology, 2012, 206, 4750-4755.	2.2	7
116	Fibroblast functionality on novel Ti 30Ta nanotube array. Materials Science and Engineering C, 2012, 32, 2060-2067.	3.8	28
117	Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium. Materials Science and Engineering C, 2012, 32, 2135-2144.	3.8	80
118	Mineralization Content Alters Osteogenic Responses of Bone Marrow Stromal Cells on Hydroxyapatite/Polycaprolactone Composite Nanofiber Scaffolds. Journal of Functional Biomaterials, 2012, 3, 776-798.	1.8	14
119	Modeling of PEG grafting and prediction of interfacial force profile using Xâ€ray photoelectron spectroscopy. Surface and Interface Analysis, 2012, 44, 144-149.	0.8	5
120	PCL Nanopillars Versus Nanofibers: A Contrast in Progenitor Cell Morphology, Proliferation, and Fate Determination. Advanced Engineering Materials, 2012, 14, B351.	1.6	7
121	Antimicrobial effects of nanofiber poly(caprolactone) tissue scaffolds releasing rifampicin. Journal of Materials Science: Materials in Medicine, 2012, 23, 1411-1420.	1.7	57
122	Preservation of FGF-2 bioactivity using heparin-based nanoparticles, and their delivery from electrospun chitosan fibers. Acta Biomaterialia, 2012, 8, 1551-1559.	4.1	119
123	Ion etching for sharp tip features on titanium and the response of cells to these surfaces. Materials Letters, 2012, 81, 158-161.	1.3	4
124	Improved thrombogenicity on oxygen etched Ti6Al4V surfaces. Materials Science and Engineering C, 2012, 32, 1196-1203.	3.8	13
125	Selective targeting of microglia by quantum dots. Journal of Neuroinflammation, 2012, 9, 22.	3.1	64
126	Ion beam etching titanium for enhanced osteoblast response. Journal of Materials Science, 2011, 46, 6087-6095.	1.7	30

#	Article	IF	CITATIONS
127	Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays. Acta Biomaterialia, 2011, 7, 2686-2696.	4.1	69
128	Electroconductive polymeric nanowire templates facilitates in vitro C17.2 neural stem cell line adhesion, proliferation and differentiation. Acta Biomaterialia, 2011, 7, 2892-2901.	4.1	56
129	Dynamic mechanical analysis and biomineralization of hyaluronan–polyethylene copolymers for potential use in osteochondral defect repair. Acta Biomaterialia, 2011, 7, 1184-1191.	4.1	22
130	Metal Oxide Nanoarchitectures for Biotemplating Application. , 2011, , 663-688.		0
131	Osteogenic differentiation of bone marrow stromal cells on poly(Îμ-caprolactone) nanofiber scaffolds. Acta Biomaterialia, 2010, 6, 2949-2959.	4.1	130
132	Hemocompatibility of titania nanotube arrays. Journal of Biomedical Materials Research - Part A, 2010, 95A, 350-360.	2.1	104
133	Prediction of protein interaction behaviour with PEC-grafted matrices using X-ray photoelectron spectroscopy. Applied Surface Science, 2010, 256, 4894-4901.	3.1	30
134	Template synthesized poly(É>-caprolactone) nanowire surfaces for neural tissue engineering. Biomaterials, 2010, 31, 3492-3501.	5.7	56
135	Conformational Studies of Covalently Grafted Poly(ethylene glycol) on Modified Solid Matrices Using X-ray Photoelectron Spectroscopy. Langmuir, 2010, 26, 7299-7306.	1.6	60
136	Nanostructured tantala as a template for enhanced osseointegration. Nanotechnology, 2009, 20, 045102.	1.3	37
137	Biocompatibility and Mesenchymal Stem Cell Response to Poly(É›-Caprolactone) Nanowire Surfaces for Orthopedic Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 2547-2559.	1.6	18
138	<i>In vitro</i> inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. Journal of Biomedical Materials Research - Part A, 2009, 91A, 647-655.	2.1	90
139	Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnology Progress, 2009, 25, 1539-1560.	1.3	607
140	Biodegradable poly(É›-caprolactone) nanowires for bone tissue engineering applications. Biomaterials, 2009, 30, 780-788.	5.7	161
141	Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. Journal of Membrane Science, 2008, 319, 199-205.	4.1	95
142	Purified and surfactant-free coenzyme Q10-loaded biodegradable nanoparticles. International Journal of Pharmaceutics, 2008, 348, 107-114.	2.6	57
143	Surface Modification of SU-8 for Enhanced Biofunctionality and Nonfouling Properties. Langmuir, 2008, 24, 2631-2636.	1.6	69
144	<i>In vitro</i> Immunogenicity of Silicon-Based Micro- and Nanostructured Surfaces. ACS Nano, 2008, 2, 1076-1084.	7.3	53

#	Article	IF	CITATIONS
145	TiO ₂ Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil:  Phenol Red Diffusion. Journal of Physical Chemistry C, 2007, 111, 14992-14997.	1.5	466
146	Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces. Journal of Biomedical Materials Research - Part A, 2007, 80A, 955-964.	2.1	125
147	Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials, 2007, 28, 3188-3197.	5.7	560
148	Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials, 2007, 28, 4880-4888.	5.7	518
149	Biocompatibility of nanoporous alumina membranes for immunoisolation. Biomaterials, 2007, 28, 2638-2645.	5.7	160
150	Titania Nanotubes: A Novel Platform for Drugâ€Eluting Coatings for Medical Implants?. Small, 2007, 3, 1878-1881.	5.2	308
151	Design and Biological Applications of Nanostructured Poly(Ethylene Glycol) Films. , 2007, , .		0
152	Off-wafer fabrication and surface modification of asymmetric 3D SU-8 microparticles. Nature Protocols, 2006, 1, 3153-3158.	5.5	61
153	Optical sensing of biomolecules using microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 148-155.	1.9	330
154	Nanostructured surfaces for bone biotemplating applications. Journal of Orthopaedic Research, 2006, 24, 619-627.	1.2	57
155	Influence of nanoporous alumina membranes on long-term osteoblast response. Biomaterials, 2005, 26, 4516-4522.	5.7	139
156	Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. Journal of Biomedical Materials Research - Part A, 2005, 72A, 288-295.	2.1	105
157	Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. Biomaterials, 2005, 26, 1969-1976.	5.7	116
158	Microring resonators for biochemical sensing. , 2005, , .		0
159	Modeling of RGDC Film Parameters Using X-ray Photoelectron Spectroscopy. Langmuir, 2005, 21, 7061-7065.	1.6	14
160	Poly(ethylene glycol) interfaces: an approach for enhanced performance of microfluidic systems. Biosensors and Bioelectronics, 2004, 19, 1037-1044.	5.3	76
161	Neurotransmitter analog tethered to a silicon platform for neuro-bioMEMS applications. Biotechnology and Bioengineering, 2004, 87, 669-674.	1.7	22
162	Poly (ethylene glycol) grafted nanoporous alumina membranes. Journal of Membrane Science, 2004, 243, 97-106.	4.1	26

#	Article	IF	CITATIONS
163	Surface Modification of Nanoporous Alumina Surfaces with Poly(ethylene glycol). Langmuir, 2004, 20, 8035-8041.	1.6	159
164	Quantitative XPS Analysis of PEG-Modified Silicon Surfaces. Journal of Physical Chemistry B, 2004, 108, 5185-5188.	1.2	61
165	AFM analysis of organic silane thin films for bioMEMS applications. Surface and Interface Analysis, 2003, 35, 205-215.	0.8	21
166	Characterization of vapor deposited poly (ethylene glycol) films on silicon surfaces for surface modification of microfluidic systems. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 645.	1.6	30
167	Controlling Nonspecific Protein Interactions in Silicon Biomicrosystems with Nanostructured Poly(ethylene glycol) Films. Langmuir, 2002, 18, 8728-8731.	1.6	80
168	Characterization of vapor deposited thin silane films on silicon substrates for biomedical microdevices. Surface and Coatings Technology, 2002, 154, 253-261.	2.2	57
169	Chemical Vapor Deposition of Silanes on Plain and Microfabricated Silicon Surfaces. , 2002, , 319-325.		0
170	Ion Bean Etching on Ti-30Ta Alloy for Biomedical Application. Materials Science Forum, 0, 805, 57-60.	0.3	6
171	Cellular Functionality on Nanotubes of Ti-30Ta Alloy. Materials Science Forum, 0, 805, 61-64.	0.3	8
172	Human Dermal Fibroblast Adhesion on Ti-7.5Mo after TiO ₂ Nanotubes Growth. Materials Science Forum, 0, 899, 195-200.	0.3	4
173	Zwitterionic Polymeric Materials. , 0, , 8299-8310.		1
174	Chitosan Imparts Better Biological Properties for Poly(Îμ-caprolactone) Electrospun Membranes than Dexamethasone. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
175	Ex vivo evaluation of blood coagulation on endothelial glycocalyx-inspired surfaces using thromboelastography. In Vitro Models, 0, , 1.	1.0	2
176	Welcome to In vitro models. In Vitro Models, 0, , 1.	1.0	0
177	A novel colorimetric biosensor for detecting SARS-CoV-2 by utilizing the interaction between nucleocapsid antibody and spike proteins. In Vitro Models, 0, , .	1.0	6
178	Improved in vitro endothelialization on nanostructured titania with tannin/glycosaminoglycan-based polyelectrolyte multilayers. In Vitro Models, 0, , .	1.0	1