
Meijie Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/355308/publications.pdf Version: 2024-02-01

MELLIE CHEN

#	Article	IF	CITATIONS
1	Passive daytime radiative cooling: Fundamentals, material designs, and applications. EcoMat, 2022, 4, e12153.	11.9	56
2	Scalable aqueous processing-based radiative cooling coatings for heat dissipation applications. Applied Materials Today, 2022, 26, 101298.	4.3	13
3	Solar absorption characteristics of SiO2@Au core-shell composite nanorods for the direct absorption solar collector. Renewable Energy, 2022, 189, 402-411.	8.9	29
4	Ultra-stable carbon quantum dot nanofluids for direct absorption solar collectors. Solar Energy Materials and Solar Cells, 2022, 240, 111720.	6.2	20
5	Enhancing the solar absorption performance of nanoparticle suspensions by tuning the scattering effect and incident light location. International Journal of Thermal Sciences, 2022, 177, 107547.	4.9	6
6	Sustainable and self-cleaning bilayer coatings for high-efficiency daytime radiative cooling. Journal of Materials Chemistry C, 2022, 10, 8329-8338.	5.5	14
7	Enhancement of solar absorption performance using TiN@SiCw plasmonic nanofluids for effective photo-thermal conversion: Numerical and experimental investigation. Renewable Energy, 2022, 193, 1062-1073.	8.9	33
8	All-Day Freshwater Harvesting by Selective Solar Absorption and Radiative Cooling. ACS Applied Materials & Interfaces, 2022, 14, 26255-26263.	8.0	24
9	Selective absorber and emitter boost water evaporation and condensation toward water collection. Materials Today Energy, 2022, 28, 101072.	4.7	10
10	All-day continuous electrical power generator by solar heating and radiative cooling from the sky. Applied Energy, 2022, 322, 119403.	10.1	16
11	Highly solar reflectance and infrared transparent porous coating for non-contact heat dissipations. IScience, 2022, 25, 104726.	4.1	16
12	Optimized Design of Multi-layer Nano-photonic Structures for Selective Absorption Applications by Artificial Neural Networks. Plasmonics, 2021, 16, 653-659.	3.4	4
13	Systematically investigating solar absorption performance of plasmonic nanoparticles. Energy, 2021, 216, 119254.	8.8	30
14	Theoretical design of nanoparticle-based spectrally emitter for thermophotovoltaic applications. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114471.	2.7	17
15	Scalable Aqueous Processingâ€Based Passive Daytime Radiative Cooling Coatings. Advanced Functional Materials, 2021, 31, 2010334.	14.9	74
16	Designing Mesoporous Photonic Structures for High-Performance Passive Daytime Radiative Cooling. Nano Letters, 2021, 21, 1412-1418.	9.1	106
17	Modeling the solar absorption performance of Copper@Carbon core–shell nanoparticles. Journal of Materials Science, 2021, 56, 13659-13672.	3.7	15
18	Enhancing infrared emission behavior of polymer coatings for radiative cooling applications. Journal Physics D: Applied Physics, 2021, 54, 295501.	2.8	27

Meijie Chen

#	Article	IF	CITATIONS
19	Investigating the effective radiative cooling performance of random dielectric microsphere coatings. International Journal of Heat and Mass Transfer, 2021, 173, 121263.	4.8	29
20	Numerically enhancing daytime radiative cooling performance of random dielectric microsphere coatings by hollow structures. Journal of Photonics for Energy, 2021, 11, .	1.3	6
21	Performance analysis of solar thermophotovoltaic system with selective absorber/emitter. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107163.	2.3	23
22	Enhanced solar thermal conversion performance of plasmonic gold dimer nanofluids. Applied Thermal Engineering, 2020, 178, 115561.	6.0	31
23	Coupled plasmon resonances of Au thorn nanoparticles to enhance solar absorption performance. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 250, 107029.	2.3	37
24	Transparent Display by the Scattering Effect of Plasmonic Au-Ag Nanoparticles. Plasmonics, 2020, 15, 1855-1861.	3.4	8
25	A Scalable Dealloying Technique To Create Thermally Stable Plasmonic Nickel Selective Solar Absorbers. ACS Applied Energy Materials, 2019, 2, 6551-6557.	5.1	30
26	Local Heating Control of Plasmonic Nanoparticles for Different Incident Lights and Nanoparticles. Plasmonics, 2019, 14, 1893-1902.	3.4	9
27	New Insights into Nail Penetration of Liâ€lon Batteries: Effects of Heterogeneous Contact Resistance. Batteries and Supercaps, 2019, 2, 874-881.	4.7	15
28	Tuning Plasmonic Near-Perfect Absorber for Selective Absorption Applications. Plasmonics, 2019, 14, 1357-1364.	3.4	15
29	Shape-dependent solar thermal conversion properties of plasmonic Au nanoparticles under different light filter conditions. Solar Energy, 2019, 182, 340-347.	6.1	41
30	Numerically investigating a wide-angle polarization-independent ultra-broadband solar selective absorber for high-efficiency solar thermal energy conversion. Solar Energy, 2019, 184, 489-496.	6.1	38
31	Local temperature control of hybrid plasmonic nano-antennas. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 225, 50-57.	2.3	10
32	Solar thermal conversion and thermal energy storage of CuO/Paraffin phase change composites. International Journal of Heat and Mass Transfer, 2019, 130, 1133-1140.	4.8	101
33	Highâ€Energyâ€Density Foldable Battery Enabled by Zigzagâ€Like Design. Advanced Energy Materials, 2019, 9, 1802998.	19.5	53
34	Quantifying and Comparing the Near-Field Enhancement, Photothermal Conversion, and Local Heating Performance of Plasmonic SiO2@Au Core-Shell Nanoparticles. Plasmonics, 2019, 14, 1019-1027.	3.4	15
35	Separating photo-thermal conversion and steam generation process for evaporation enhancement using a solar absorber. Applied Energy, 2019, 236, 244-252.	10.1	40
36	Complementary enhanced solar thermal conversion performance of core-shell nanoparticles. Applied Energy, 2018, 211, 735-742.	10.1	67

Meijie Chen

#	Article	IF	CITATIONS
37	Numerically investigating the optical properties of plasmonic metallic nanoparticles for effective solar absorption and heating. Solar Energy, 2018, 161, 17-24.	6.1	51
38	ZnO-Au composite hierarchical particles dispersed oil-based nanofluids for direct absorption solar collectors. Solar Energy Materials and Solar Cells, 2018, 179, 185-193.	6.2	96
39	Plasmonic nanostructures for broadband solar absorption based on the intrinsic absorption of metals. Solar Energy Materials and Solar Cells, 2018, 188, 156-163.	6.2	76
40	Plasmonic multi-thorny Gold nanostructures for enhanced solar thermal conversion. Solar Energy, 2018, 171, 73-82.	6.1	46
41	Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nature Communications, 2018, 9, 2942.	12.8	138
42	Synthesis and optical properties of size-controlled gold nanoparticles. Powder Technology, 2017, 311, 25-33.	4.2	23
43	Investigation into Au nanofluids for solar photothermal conversion. International Journal of Heat and Mass Transfer, 2017, 108, 1894-1900.	4.8	101
44	Solar evaporation enhancement by a compound film based on Au@TiO2 core–shell nanoparticles. Solar Energy, 2017, 155, 1225-1232.	6.1	43
45	Preparation of Au–Ag bimetallic nanoparticles for enhanced solar photothermal conversion. International Journal of Heat and Mass Transfer, 2017, 114, 1098-1104.	4.8	70
46	Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors. Applied Energy, 2016, 181, 65-74.	10.1	197
47	Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles. Energy Conversion and Management, 2016, 127, 293-300.	9.2	99
48	Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes. Energy Conversion and Management, 2016, 112, 21-30.	9.2	128
49	An experimental investigation on sunlight absorption characteristics of silver nanofluids. Solar Energy, 2015, 115, 85-94.	6.1	137
50	Solar Thermal Conversion of Plasmonic Nanofluids: Fundamentals and Applications. , 0, , .		4