Carolina Schebor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3553006/publications.pdf

Version: 2024-02-01

42 papers

1,126 citations

430874 18 h-index 32 g-index

42 all docs 42 docs citations

times ranked

42

1277 citing authors

#	Article	IF	CITATIONS
1	Colorant and antioxidant properties of freeze-dried extracts from wild berries: use of ultrasound-assisted extraction method and drivers of liking of colored yogurts. Journal of Food Science and Technology, 2022, 59, 944-955.	2.8	8
2	Pulsed electric fields using a multiple needle chamber to improve bioactive compounds extraction from unprocessed Opuntia ficus-indica fruits. Journal of Food Engineering, 2022, 317, 110864.	5.2	13
3	Potential bioactive ingredient from elderberry fruit: Process optimization for a maximum phenolic recovery, physicochemical characterization, and bioaccesibility. Journal of Berry Research, 2021, 11, 51-68.	1.4	15
4	Natural food colorant from blackcurrant sprayâ€dried powder obtained by enzymatic treatment: Characterization and acceptability. Journal of Food Processing and Preservation, 2021, 45, .	2.0	3
5	Glutenâ€free cookies added with fibre and bioactive compounds from blackcurrant residue. International Journal of Food Science and Technology, 2021, 56, 1734-1740.	2.7	20
6	Development and characterization of two gelatin candies with alternative sweeteners and fruit bioactive compounds. LWT - Food Science and Technology, 2021, 141, 110894.	5. 2	13
7	Physicochemical, functional, and sensory characterization of apple leathers enriched with acáchul (Ardisia compressa Kunth) powder. LWT - Food Science and Technology, 2021, 146, 111472.	5.2	9
8	Development of healthy gummy jellies containing honey and propolis. Journal of the Science of Food and Agriculture, 2020, 100, 1030-1037.	3.5	28
9	Whey proteins-folic acid complexes: Formation, isolation and bioavailability in a Lactobacillus casei model. Food Structure, 2020, 26, 100162.	4.5	9
10	Physical and functional properties of roselle (<i>Hibiscus sabdariffa L</i> .) extract spray dried with maltodextrinâ€gum arabic mixtures. Journal of Food Processing and Preservation, 2019, 43, e14065.	2.0	18
11	Optimization of Pulsed Electric Field Treatment for the Extraction of Bioactive Compounds from Blackcurrant. Food and Bioprocess Technology, 2019, 12, 1102-1109.	4.7	44
12	Freeze-dried candies from blackcurrant (Ribes nigrum L.) and yoghurt. Physicochemical and sensorial characterization. LWT - Food Science and Technology, 2019, 100, 444-449.	5.2	19
13	Spray-dried powders from berries extracts obtained upon several processing steps to improve the bioactive components content. Powder Technology, 2019, 342, 1008-1015.	4.2	49
14	Valorization of postharvest sweet cherry discard for the development of dehydrated fruit ingredients: compositional, physical, and mechanical properties. Journal of the Science of Food and Agriculture, 2018, 98, 5450-5458.	3.5	2
15	Physical and functional properties of spray-dried powders from blackcurrant juice and extracts obtained from the waste of juice processing. Food Science and Technology International, 2018, 24, 78-86.	2.2	29
16	Monitoring mechanical, color and anthocyanin changes during rehydration of raspberry-based products. Journal of Berry Research, 2017, 7, 261-280.	1.4	3
17	Fruit snacks from raspberries: influence of drying parameters on colour degradation and bioactive potential. International Journal of Food Science and Technology, 2017, 52, 313-328.	2.7	39
18	Effect of Galacto-Oligosaccharides: Maltodextrin Matrices on the Recovery of Lactobacillus plantarum after Spray-Drying. Frontiers in Microbiology, 2016, 7, 584.	3.5	37

#	Article	IF	CITATIONS
19	Physical and mechanical properties of raspberries subjected to osmotic dehydration and further dehydration by air- and freeze-drying. Food and Bioproducts Processing, 2016, 100, 156-171.	3.6	49
20	Color and Bioactive Compounds Characteristics on Dehydrated Sweet Cherry Products. Food and Bioprocess Technology, 2015, 8, 1716-1729.	4.7	16
21	Osmotic Dehydrated Raspberries: Changes in Physical Aspects and Bioactive Compounds. Drying Technology, 2015, 33, 659-670.	3.1	13
22	Evaluation of Structural Shrinkage on Freeze-Dried Fruits by Image Analysis: Effect of Relative Humidity and Heat Treatment. Food and Bioprocess Technology, 2014, 7, 2618-2626.	4.7	10
23	Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Drying Technology, 2014, 32, 197-207.	3.1	99
24	Encapsulation of citral in formulations containing sucrose or trehalose: Emulsions properties and stability. Food and Bioproducts Processing, 2014, 92, 266-274.	3.6	25
25	Proton mobility for the description of dynamic aspects of freeze-dried fruits. Journal of Food Engineering, 2014, 125, 44-50.	5.2	12
26	Water content effect on the chromatic attributes of dehydrated strawberries during storage, as evaluated by image analysis. LWT - Food Science and Technology, 2013, 52, 157-162.	5.2	24
27	New Insights in the Use of Trehalose and Modified Starches for the Encapsulation of Orange Essential Oil. Food and Bioprocess Technology, 2013, 7, 1745.	4.7	5
28	Impact of Starch Gelatinization on the Kinetics of Maillard Reaction in Freeze-Dried Potato Systems. Food and Bioprocess Technology, 2012, 5, 2428-2434.	4.7	4
29	Physico-Chemical and Mechanical Properties of Apple Disks Subjected to Osmotic Dehydration and Different Drying Methods. Food and Bioprocess Technology, 2012, 5, 1790-1802.	4.7	39
30	Effect of trehalose on the interaction of Alzheimer's $\hat{Al^2}$ -peptide and anionic lipid monolayers. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 26-33.	2.6	17
31	Integrated approach for interpreting browning rate dependence with relative humidity in dehydrated fruits. LWT - Food Science and Technology, 2011, 44, 963-968.	5 . 2	18
32	Sprayâ€drying encapsulation of citral in sucrose or trehalose matrices: physicochemical and sensory characteristics. International Journal of Food Science and Technology, 2011, 46, 2096-2102.	2.7	26
33	Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars. Carbohydrate Research, 2010, 345, 303-308.	2.3	41
34	The effect of trehalose, sucrose and maltodextrin addition on physicochemical and sensory aspects of freeze ―dried strawberry puree. International Journal of Food Science and Technology, 2009, 44, 1869-1876.	2.7	17
35	Non-enzymatic browning kinetics analysed through water–solids interactions and water mobility in dehydrated potato. Food Chemistry, 2008, 108, 900-906.	8.2	46
36	Inhibition of trehalose crystallization by cytoplasmic yeast components. Cryobiology, 2006, 52, 157-160.	0.7	7

#	Article	IF	CITATIONS
37	Phase behavior of freeze-dried phospholipid–cholesterol mixtures stabilized with trehalose. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1713, 57-64.	2.6	72
38	Glass Transition Temperatures and Fermentative Activity of Heat-Treated Commercial Active Dry Yeasts. Biotechnology Progress, 2000, 16, 163-168.	2.6	17
39	Color formation due to non-enzymatic browning in amorphous, glassy, anhydrous, model systems. Food Chemistry, 1999, 65, 427-432.	8.2	68
40	Stability to Hydrolysis and Browning of Trehalose, Sucrose and Raffinose in Low-moisture Systems in Relation to Their Use as Protectants of Dry Biomaterials. LWT - Food Science and Technology, 1999, 32, 481-485.	5.2	42
41	Thermal Stability of Invertase in Reduced-Moisture Amorphous Matrices in Relation to Glassy State and Trehalose Crystallization. Journal of Food Science, 1997, 62, 105-112.	3.1	101
42	Development of an innovative nougat from honey, blueberries and pecan nuts. Journal of Food Processing and Preservation, 0, , e16316.	2.0	0