Di-Cheng Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3552938/publications.pdf Version: 2024-02-01

DI-CHENC 7HU

#	Article	IF	CITATIONS
1	Generation of syn-collisional S-type granites in collision zones: An example from the Late Triassic Tanggula Batholith in northern Tibet. Gondwana Research, 2022, 104, 185-198.	3.0	4
2	The impact of a tear in the subducted Indian plate on the Miocene geology of the Himalayan-Tibetan orogen. Bulletin of the Geological Society of America, 2022, 134, 681-690.	1.6	31
3	Middle-Late Jurassic magmatism in the west central Lhasa subterrane, Tibet: Petrology, zircon chronology, elemental and Sr-Nd-Pb-Hf-Mg isotopic geochemistry. Lithos, 2022, 408-409, 106549.	0.6	1
4	Early Permian magmatism above a slab window in Inner Mongolia, North China: Implications for the Paleo-Asian Ocean subduction processes and accretionary crustal growth. Solid Earth Sciences, 2022, 7, 87-103.	0.8	3
5	Cumulate granites: A perspective from new apatite MgO partition coefficients. Geology, 2022, 50, 681-685.	2.0	4
6	Large zircon age spans record multi-stage history of batholith assembly: Insights from the Late Triassic Dongcuo batholith in the eastern Tibetan Plateau. Journal of Asian Earth Sciences, 2022, , 105220.	1.0	2
7	Temporal and Spatial Variations of Enriched Source Components in Linzizong Volcanic Succession, Tibet, and Implications for the India–Asia Collision. Journal of Petrology, 2022, 63, .	1.1	11
8	High- and low-Mg adakitic rocks in southern Tibet: Implication for the crustal thickening and geodynamic process in the late Cretaceous. Lithos, 2022, 422-423, 106748.	0.6	1
9	Two episodes of Eocene mafic magmatism in the southern Lhasa terrane imply an eastward propagation of slab breakoff. Gondwana Research, 2022, 110, 31-43.	3.0	4
10	Leucogranite Records Multiple Collisional Orogenies. Geophysical Research Letters, 2022, 49, .	1.5	4
11	Petrogenesis of ca. 113 Ma volcanic rocks in the central Lhasa subterrane, southern Tibet: Implications for the tectonic setting and continental crustal reworking. Geological Journal, 2021, 56, 1987-2007.	0.6	3
12	Magmatic Evolution following Damp Tholeiitic and Wet Calc-alkaline Liquid Lines of Descent: an Eastern Pontides (NE Turkey) Example. Journal of Petrology, 2021, 62, .	1.1	14
13	Tetrad effect of rare earth elements caused by fractional crystallization in high-silica granites: An example from central Tibet. Lithos, 2021, 384-385, 105968.	0.6	6
14	Was there an exchange of detritus between the northern and southern Black Sea terranes in the Mesozoic-early Cenozoic?. Gondwana Research, 2021, , .	3.0	3
15	The detrital zircon U-Pb-Hf isotopes of the Triassic sediments in northern Pakistan: Implications for crustal evolution of the NW Indian continent. Precambrian Research, 2021, 357, 106146.	1.2	3
16	Nb-Ta systematics of Kohistan and Gangdese arc lower crust: Implications for continental crust formation. Ore Geology Reviews, 2021, 133, 104131.	1.1	5
17	Petrogenesis of Himalayan Leucogranites: Perspective From a Combined Elemental and Feâ€Srâ€Nd Isotope Study. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021839.	1.4	7
18	Late Cretaceous adakitic and A-type granitoids in Chanang, southern Tibet: Implications for Neo-Tethyan slab rollback. Gondwana Research, 2021, 96, 89-104.	3.0	11

#	Article	IF	CITATIONS
19	Resolving the Paleogeographic Puzzle of the Lhasa Terrane in Southern Tibet. Geophysical Research Letters, 2021, 48, e2021GL094236.	1.5	17
20	Late Cretaceous alkaline magmas of the Eastern Pontides Orogenic Belt (NE Turkey): A review with new geological, geochemical and geochronological data. Gondwana Research, 2021, 97, 204-239.	3.0	7
21	Recycling of ancient sub-oceanic mantle in the Neo-Tethyan asthenosphere: Evidence from major and trace elements and Hf–Os isotopes of the Kop Mountain ophiolite, NE Turkey. Geochimica Et Cosmochimica Acta, 2021, 311, 43-58.	1.6	5
22	Xenoliths in Late Cretaceous to Early Paleocene adakites of the Eastern Pontides Orogenic Belt, NE Turkey. Lithos, 2021, 398-399, 106265.	0.6	2
23	Identifying deep recycled carbonates through Miocene basalts in the Maguan area, SE Tibetan Plateau. Lithos, 2021, 400-401, 106356.	0.6	2
24	Petrogenetic evolution of the Zhuopan potassic alkaline complex, western Yunnan, SW China: Implications for heterogeneous metasomatism of lithospheric mantle beneath Simao and western Yangtze block. Lithos, 2021, 400-401, 106354.	0.6	3
25	Reheating and Magma Mixing Recorded by Zircon and Quartz from High-Silica Rhyolite in the Coqen Region, Southern Tibet. American Mineralogist, 2021, 106, 112-122.	0.9	7
26	Mafic Microgranular Enclaves Formed by Gas-driven Filter Pressing During Rapid Cooling: an Example from the Gangdese Batholith in Southern Tibet. Journal of Petrology, 2021, 61, .	1.1	6
27	Geochemistry, detrital zircon geochronology and Hf isotope of the clastic rocks in southern Tibet: Implications for the Jurassic-Cretaceous tectonic evolution of the Lhasa terrane. Gondwana Research, 2020, 78, 41-57.	3.0	22
28	Intermediate rocks in the Comei large igneous provinces produced by amphibole crystallization of tholeiitic basaltic magma. Lithos, 2020, 374-375, 105731.	0.6	3
29	Testing oceanic crust–mantle decoupling by Sr–Nd–Hf–Os isotopes of Neo-Tethyan ophiolites. Lithos, 2020, 376-377, 105757.	0.6	9
30	Source and pressure effects in the genesis of the Late Triassic high Sr/Y granites from the Songpan-Ganzi Fold Belt, eastern Tibetan Plateau. Lithos, 2020, 368-369, 105584.	0.6	7
31	Shoshonitic enclaves in the high Sr/Y Nyemo pluton, southern Tibet: Implications for Oligocene magma mixing and the onset of extension of the southern Lhasa terrane. Lithos, 2020, 362-363, 105490.	0.6	5
32	Petrogenesis of Late Carboniferous intrusions in the Linglong area of Eastern Tianshan, NW China, and tectonic implications: Geochronological, geochemical, and zircon Hf–O isotopic constraints. Ore Geology Reviews, 2020, 120, 103462.	1.1	17
33	Reconciling Orogenic Drivers for the Evolution of the Bangongâ€Nujiang Tethys During Middle‣ate Jurassic. Tectonics, 2020, 39, e2019TC005951.	1.3	38
34	Magmatic and structural controls on the tonnage and metal associations of collision-related porphyry copper deposits in southern Tibet. Ore Geology Reviews, 2020, 122, 103509.	1.1	10
35	The complex life cycle of oceanic lithosphere: A study of Yarlung-Zangbo ophiolitic peridotites, Tibet. Geochimica Et Cosmochimica Acta, 2020, 277, 175-191.	1.6	41
36	Compositional changes of granitoids from the Menglian Batholith in SW China at ca. 122ÂMa: Implications for the origin of decoupled Nd-Hf isotopic compositions and crust generation in collision zones. Lithos, 2020, 364-365, 105550.	0.6	10

#	Article	IF	CITATIONS
37	Porphyry mineralization in the Tethyan orogen. Science China Earth Sciences, 2020, 63, 2042-2067.	2.3	56
38	Hf and Nd Isotopic Constraints on Pre―and Synâ€collisional Crustal Thickness of Southern Tibet. Journal of Geophysical Research: Solid Earth, 2019, 124, 11038-11054.	1.4	13
39	Origin of giant postâ€collisional porphyry Cu metallogenic belt in southern Tibet: constrains from magmatic H2O, <i>f</i> O2, and S. Acta Geologica Sinica, 2019, 93, 241-242.	0.8	1
40	Geochemical evidence for thin syn-collision crust and major crustal thickening between 45 and 32â€ ⁻ Ma at the southern margin of Tibet. Gondwana Research, 2019, 73, 123-135.	3.0	37
41	Petrogenesis and tectonic implications of the Eocene-Oligocene potassic felsic suites in western Yunnan, eastern Tibetan Plateau: Evidence from petrology, zircon chronology, elemental and Sr-Nd-Pb-Hf isotopic geochemistry. Lithos, 2019, 340-341, 287-315.	0.6	17
42	Constructing the Early Mesozoic Gangdese Crust in Southern Tibet by Hornblende-dominated Magmatic Differentiation. Journal of Petrology, 2019, 60, 515-552.	1.1	79
43	Late Cretaceous volcanic rocks in the Sangri area, southern Lhasa Terrane, Tibet: Evidence for oceanic ridge subduction. Lithos, 2019, 326-327, 144-157.	0.6	67
44	Late Cretaceous I- and A-type magmas in eastern Turkey: Magmatic response to double-sided subduction of Paleo- and Neo-Tethyan lithospheres. Lithos, 2019, 326-327, 39-70.	0.6	25
45	Gangdese magmatism in southern Tibet and India–Asia convergence since 120 Ma. Geological Society Special Publication, 2019, 483, 583-604.	0.8	110
46	Generation of leucogranites via fractional crystallization: A case from the Late Triassic Luoza batholith in the Lhasa Terrane, southern Tibet. Gondwana Research, 2019, 66, 63-76.	3.0	28
47	Geochemistry and petrogenesis of Late Cretaceous Namling gabbro and dykes in Gangdese batholith, Tibet. Acta Petrologica Sinica, 2019, 35, 387-404.	0.3	8
48	Geochronology, geochemistry and petrogenesis of the Late Jurassic-Early Cretaceous granitoids in Zuozuo, western Central Lhasa Terrane, Tibet. Acta Petrologica Sinica, 2019, 35, 405-422.	0.3	3
49	Petrogenesis and geological implications of the alkali-rich porphyry in southern Ailaoshan-Red River shear zone. Acta Petrologica Sinica, 2019, 35, 485-504.	0.3	5
50	Origin of the ca. 50†Ma Linzizong shoshonitic volcanic rocks in the eastern Gangdese arc, southern Tibet. Lithos, 2018, 304-307, 374-387.	0.6	35
51	One or Two Early Cretaceous Arc Systems in the Lhasa Terrane, Southern Tibet. Journal of Geophysical Research: Solid Earth, 2018, 123, 3391-3413.	1.4	74
52	Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Science Reviews, 2018, 181, 122-143.	4.0	160
53	Survival of the Lhasa Terrane during its collision with Asia due to crust-mantle coupling revealed by ca. 114†Ma intrusive rocks in western Tibet. Lithos, 2018, 304-307, 200-210.	0.6	7
54	Constructing the Eastern Margin of the Tibetan Plateau During the Late Triassic. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,449.	1.4	24

#	Article	IF	CITATIONS
55	Transition From Lowâ€K to Highâ€K Calcâ€Alkaline Magmatism at Approximately 84ÂMa in the Eastern Pontides (NE Turkey): Magmatic Response to Slab Rollback of the Black Sea. Journal of Geophysical Research: Solid Earth, 2018, 123, 7604-7628.	1.4	34
56	Westward-younging high-Mg adakitic magmatism in central Tibet: Record of a westward-migrating lithospheric foundering beneath the Lhasa–Qiangtang collision zone during the Late Cretaceous. Lithos, 2018, 316-317, 92-103.	0.6	25
57	Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane. Lithos, 2017, 278-281, 477-490.	0.6	89
58	Constraining quantitatively the timing and process of continent-continent collision using magmatic record: Method and examples. Science China Earth Sciences, 2017, 60, 1040-1056.	2.3	60
59	Eocene granitoids of northern Turkey: Polybaric magmatism in an evolving arc–slab window system. Gondwana Research, 2017, 50, 311-345.	3.0	55
60	Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 2017, 122, 214-223.	1.4	178
61	Leucogranites in Lhozag, southern Tibet: Implications for the tectonic evolution of the eastern Himalaya. Lithos, 2017, 294-295, 246-262.	0.6	38
62	Potassic volcanic rocks and adakitic intrusions in southern Tibet: Insights into mantle–crust interaction and mass transfer from Indian plate. Lithos, 2017, 268-271, 48-64.	0.6	73
63	Discovery of the early Jurassic Gajia mélange in the Bangong–Nujiang suture zone: Southward subduction of the Bangong–Nujiang Ocean?. International Journal of Earth Sciences, 2017, 106, 1277-1288.	0.9	13
64	The geochronologic and geochemical constraints on the Early Cretaceous subduction magmatism in the central Lhasa subterrane, Tibet. Geological Journal, 2017, 52, 463-475.	0.6	12
65	Mantle inputs to Himalayan anatexis: Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves. Lithos, 2016, 264, 125-140.	0.6	57
66	Slab-derived adakites and subslab asthenosphere-derived OIB-type rocks at 156 ± 2 Ma from the north of Gerze, central Tibet: Records of the Bangong–Nujiang oceanic ridge subduction during the Late Jurassic. Lithos, 2016, 262, 456-469.	0.6	78
67	Deep carbon cycle recorded by calciumâ€silicate rocks (rodingites) in a subductionâ€related ophiolite. Geophysical Research Letters, 2016, 43, 11,635.	1.5	15
68	Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in southern Tibet through magmatic correlation. Gondwana Research, 2016, 39, 217-229.	3.0	117
69	Cenozoic forearc gabbros from the northern zone of the Eastern Pontides Orogenic Belt, NE Turkey: Implications for slab window magmatism and convergent margin tectonics. Gondwana Research, 2016, 33, 160-189.	3.0	43
70	Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 2016, 245, 7-17.	0.6	432
71	Magmatic record of India-Asia collision. Scientific Reports, 2015, 5, 14289.	1.6	316
72	Petrogenesis of peralkaline rhyolites in an intra-plate setting: Glass House Mountains, southeast Queensland, Australia. Lithos, 2015, 216-217, 196-210.	0.6	35

#	Article	IF	CITATIONS
73	Multi-stage volcanic activities and geodynamic evolution of the Lhasa terrane during the Cretaceous: Insights from the Xigaze forearc basin. Lithos, 2015, 218-219, 127-140.	0.6	31
74	Thickened juvenile lower crust-derived ~ 90 Ma adakitic rocks in the central Lhasa terrane, Tibet. Lithos, 2015, 224-225, 225-239.	0.6	65
75	Eocene magmatic processes and crustal thickening in southern Tibet: Insights from strongly fractionated ca. 43Ma granites in the western Gangdese Batholith. Lithos, 2015, 239, 128-141.	0.6	52
76	Identifying mantle carbonatite metasomatism through Os–Sr–Mg isotopes in Tibetan ultrapotassic rocks. Earth and Planetary Science Letters, 2015, 430, 458-469.	1.8	82
77	Zircon xenocrysts in Tibetan ultrapotassic magmas: Imaging the deep crust through time. Geology, 2014, 42, 43-46.	2.0	85
78	Late Cretaceous magmatism in Mamba area, central Lhasa subterrane: Products of back-arc extension of Neo-Tethyan Ocean?. Gondwana Research, 2014, 26, 505-520.	3.0	51
79	Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India–Asia collision and convergence. Geochimica Et Cosmochimica Acta, 2014, 143, 207-231.	1.6	187
80	Picritic porphyrites and associated basalts from the remnant Comei Large Igneous Province in <scp>SE</scp> Tibet: records of mantleâ€plume activity. Terra Nova, 2014, 26, 487-494.	0.9	18
81	Northward subduction of Bangong–Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos, 2014, 205, 284-297.	0.6	140
82	Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone. Lithos, 2014, 198-199, 24-37.	0.6	106
83	Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism. Chemical Geology, 2014, 370, 1-18.	1.4	188
84	Slab breakoff triggered ca. 113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Research, 2014, 26, 449-463.	3.0	148
85	Continental collision zones are primary sites for net continental crust growth — A testable hypothesis. Earth-Science Reviews, 2013, 127, 96-110.	4.0	245
86	The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 2013, 23, 1429-1454.	3.0	1,045
87	Geochemistry, zircon U–Pb geochronology and Hf isotopes of granites in the Baoshan Block, Western Yunnan: Implications for Early Paleozoic evolution along the Gondwana margin. Lithos, 2013, 179, 36-47.	0.6	81
88	Zircon U–Pb dating and the petrological and geochemical constraints on Lincang granite in Western Yunnan, China: Implications for the closure of the Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 2013, 62, 282-294.	1.0	111
89	Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent–continent collision zone. Lithos, 2013, 168-169, 144-159.	0.6	162
90	Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 2012, 328, 290-308.	1.4	288

#	Article	IF	CITATIONS
91	Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences, 2012, 53, 59-66.	1.0	95
92	Crustal thickening prior to 38 Ma in southern Tibet: Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 2012, 21, 88-99.	3.0	225
93	The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 2011, 301, 241-255.	1.8	1,096
94	Lhasa terrane in southern Tibet came from Australia. Geology, 2011, 39, 727-730.	2.0	430
95	Presence of Permian extension- and arc-type magmatism in southern Tibet: Paleogeographic implications. Bulletin of the Geological Society of America, 2010, 122, 979-993.	1.6	167
96	The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology, 2009, 37, 583-586.	2.0	219
97	Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 2009, 113, 190-212.	0.6	388
98	Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China Series D: Earth Sciences, 2009, 52, 1223-1239.	0.9	135
99	Mantle input to the crust in Southern Gangdese, Tibet, during the Cenozoic: Zircon Hf isotopic evidence. Journal of Earth Science (Wuhan, China), 2009, 20, 241-249.	1.1	61
100	Origin of the Gangdise (Transhimalaya) Permian arc in southern Tibet: Stratigraphic and volcanic geochemical constraints. Island Arc, 2009, 18, 467-487.	0.5	19
101	Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 2009, 268, 298-312.	1.4	367
102	Zircon U–Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permian collisional orogeny and paleogeography. Tectonophysics, 2009, 469, 48-60.	0.9	138
103	Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt–peridotite interaction?. Journal of Asian Earth Sciences, 2009, 34, 298-309.	1.0	322
104	Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in south Tibet: Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere?. Lithos, 2008, 100, 147-173.	0.6	126
105	SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 2008, 50, 442-471.	1.1	312
106	Whole-rock elemental and zircon Hf isotopic geochemistry of mafic and ultramafic rocks from the Early Cretaceous Comei large igneous province in SE Tibet: constraints on mantle source characteristics and petrogenesis. Himalayan Journal of Sciences, 2008, 5, 178-180.	0.3	9
107	Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: A probable example of plume–lithosphere interaction. Journal of Asian Earth Sciences, 2007, 29, 320-335.	1.0	104
108	Spatial and temporal distribution of peraluminous granites in Tibet and their tectonic significance. Journal of Asian Earth Sciences, 2007, 29, 378-389.	1.0	21

#	Article	IF	CITATIONS
109	Ages and tectonic significance of the collision-related granite porphyries in the Lhunzhub Basin, Tibet, China. Science Bulletin, 2007, 52, 1669-1679.	1.7	2
110	SHRIMP U-Pb zircon dating for the dacite of the Sangxiu Formation in the central segment of Tethyan Himalaya and its implications. Science Bulletin, 2005, 50, 563.	1.7	2
111	Perovskite U-Pb and Sr-Nd isotopic perspectives on melilitite magmatism and outward growth of the Tibetan Plateau. Geology, 0, , .	2.0	4
112	Cumulate mush hybridization by melt invasion: Evidence from compositionally-diverse amphiboles in ultramafic-mafic arc cumulates within the eastern Gangdese Batholith, southern Tibet. Journal of Petrology, O, , .	1.1	6