Gunther Andersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/355249/publications.pdf

Version: 2024-02-01

167 papers

4,814 citations

32 h-index 59 g-index

174 all docs

174 docs citations

174 times ranked

6761 citing authors

#	Article	lF	Citations
1	Using surface grafted poly(acrylamide) to simultaneously enhance the tensile strength, tensile modulus, and interfacial adhesion of carbon fibres in epoxy composites. Carbon, 2022, 186, 367-379.	10.3	24
2	Surface modification of carbon fiber as a protective strategy against thermal degradation. Composites Part A: Applied Science and Manufacturing, 2022, 153, 106740.	7.6	6
3	Carbon reinforced carbon fibers: Using surface modification as a route to enhanced physical performance. Composites Science and Technology, 2022, 218, 109217.	7.8	11
4	Sliding silicon-based Schottky diodes: Maximizing triboelectricity with surface chemistry. Nano Energy, 2022, 93, 106861.	16.0	15
5	Sizeâ€Controlled Nanosculpture of Cylindrical Pores across Multilayer Graphene via Photocatalytic Perforation. Advanced Materials Interfaces, 2022, 9, .	3.7	4
6	Mixed Surface Chemistry on Carbon Fibers to Promote Adhesion in Epoxy and PMMA Polymers. Industrial & Engineering Chemistry Research, 2022, 61, 1615-1623.	3.7	5
7	Suppression of phosphine-protected Au ₉ cluster agglomeration on SrTiO ₃ particles using a chromium hydroxide layer. Materials Advances, 2022, 3, 3620-3630.	5.4	6
8	Introducing neat fullerenes to improve the thermal stability of slot-die coated organic solar cells. Materials Advances, 2022, 3, 2838-2849.	5.4	1
9	Surface Passivation of Sputtered NiO _{<i>x</i>} Using a SAM Interface Layer to Enhance the Performance of Perovskite Solar Cells. ACS Omega, 2022, 7, 12147-12157.	3.5	38
10	A Review of State of the Art in Phosphine Ligated Gold Clusters and Application in Catalysis. Advanced Science, 2022, 9, e2105692.	11.2	39
11	Factors Influencing Catalytic Activity of Size-Specific Triphenylphosphine-Ligated Gold Nanoclusters in the Electrocatalytic Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2022, 126, 246-260.	3.1	12
12	Understanding specific ion effects and the Hofmeister series. Physical Chemistry Chemical Physics, 2022, 24, 12682-12718.	2.8	101
13	Sensitization of TiO2 nanoarrays by a novel palladium decorated naphthalene diimide functionalized graphene nanoribbons for enhanced photoelectrochemical water splitting. Materials Today Chemistry, 2022, 24, 100900.	3.5	6
14	Highly active platinum single-atom catalyst grafted onto 3D carbon cloth support for the electrocatalytic hydrogen evolution reaction. Applied Surface Science, 2022, 595, 153480.	6.1	10
15	Above 23% Efficiency by Binary Surface Passivation of Perovskite Solar Cells Using Guanidinium and Octylammonium Spacer Cations. Solar Rrl, 2022, 6, .	5.8	22
16	Dissimilar weld failure: A forensic analysis to determine primary failure mechanisms. Engineering Failure Analysis, 2022, 139, 106453.	4.0	1
17	Ion specificity in the measured concentration depth profile of ions at the Vapor-Glycerol interface. Journal of Colloid and Interface Science, 2022, 626, 687-699.	9.4	5
18	Multifunctional polymeric surface coatings of carbon fibre electrodes for enhanced energy storage performance. Chemical Engineering Journal, 2022, 447, 137560.	12.7	7

#	Article	IF	CITATIONS
19	Utilization of green reductant Thuja Orientalis for reduction of GO to RGO. Ceramics International, 2021, 47, 14862-14878.	4.8	17
20	The Importance of Schottky Barrier Height in Plasmonically Enhanced Hotâ€Electron Devices. Advanced Optical Materials, 2021, 9, 2001121.	7.3	7
21	Composition and properties of RF-sputter deposited titanium dioxide thin films. Nanoscale Advances, 2021, 3, 1077-1086.	4.6	18
22	Influence of TiO2 surface defects on the adsorption of N719 dye molecules. Physical Chemistry Chemical Physics, 2021, 23, 22160-22173.	2.8	0
23	The interaction of size-selected Ru ₃ clusters with RF-deposited TiO ₂ : probing Ru–CO binding sites with CO-temperature programmed desorption. Nanoscale Advances, 2021, 3, 3537-3553.	4.6	4
24	Carbonisation of a polymer made from sulfur and canola oil. Chemical Communications, 2021, 57, 6296-6299.	4.1	13
25	Efficient and stable wide bandgap perovskite solar cells through surface passivation with long alkyl chain organic cations. Journal of Materials Chemistry A, 2021, 9, 18454-18465.	10.3	32
26	Optical Properties of the Atomically Precise <i>C</i> ₄ Core [Au ₉ (PPh ₃) ₈] ³⁺ Cluster Probed by Transient Absorption Spectroscopy and Time-Dependent Density Functional Theory. Journal of Physical Chemistry C, 2021, 125, 2033-2044.	3.1	8
27	Au ₁₀₁ –rGO nanocomposite: immobilization of phosphine-protected gold nanoclusters on reduced graphene oxide without aggregation. Nanoscale Advances, 2021, 3, 1422-1430.	4.6	10
28	Improving the effects of plasma polymerization on carbon fiber using a surface modification pretreatment. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106319.	7.6	31
29	Innentitelbild: Creation of Highâ€Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster (Angew. Chem. 39/2021). Angewandte Chemie, 2021, 133, 21242-21242.	2.0	0
30	Creation of Highâ€Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster. Angewandte Chemie, 2021, 133, 21510-21520.	2.0	12
31	Creation of Highâ€Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster. Angewandte Chemie - International Edition, 2021, 60, 21340-21350.	13.8	74
32	Combined Bulk and Surface Passivation in Dimensionally Engineered 2Dâ€3D Perovskite Films via Chlorine Diffusion. Advanced Functional Materials, 2021, 31, 2104251.	14.9	37
33	Chemical degradation in Thermally Cycled Stainless Steel 316 with High-Temperature Phase Change Material. Solar Energy Materials and Solar Cells, 2021, 230, 111216.	6.2	4
34	Unraveling the influence of CsCl/MACl on the formation of nanotwins, stacking faults and cubic supercell structure in FA-based perovskite solar cells. Nano Energy, 2021, 87, 106226.	16.0	27
35	Investigation of the Diffusion of Cr ₂ O ₃ into Different Phases of TiO ₂ upon Annealing. ACS Applied Energy Materials, 2021, 4, 322-330.	5.1	13
36	Cr2O3 layer inhibits agglomeration of phosphine-protected Au9 clusters on TiO2 films. Journal of Chemical Physics, 2021, 155, 164702.	3.0	4

#	Article	IF	CITATIONS
37	Cyclic Copper Uptake and Release from Natural Seawater—A Fully Sustainable Antifouling Technique to Prevent Marine Growth. Environmental Science & Eamp; Technology, 2021, 55, 757-766.	10.0	6
38	Doubleâ€Sided Surface Passivation of 3D Perovskite Film for Highâ€Efficiency Mixedâ€Dimensional Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1907962.	14.9	130
39	Metal Clusters on Semiconductor Surfaces and Application in Catalysis with a Focus on Au and Ru. Advanced Materials, 2020, 32, e1904122.	21.0	24
40	Mechanism of Organic Solar Cell Performance Degradation upon Thermal Annealing of MoOx. ACS Applied Energy Materials, 2020, 3, 366-376.	5.1	19
41	Tuning the surface energy density of non-stoichiometric LaCoO3 perovskite for enhanced water oxidation. Journal of Power Sources, 2020, 478, 228748.	7.8	33
42	In Situ Formation of Mixedâ€Dimensional Surface Passivation Layers in Perovskite Solar Cells with Dualâ€Isomer Alkylammonium Cations. Small, 2020, 16, e2005022.	10.0	34
43	Solid cyclooctatetraene-based triplet quencher demonstrating excellent suppression of singleta \in triplet annihilation in optical and electrical excitation. Nature Communications, 2020, 11, 5623.	12.8	31
44	Sub-monolayer Au ₉ cluster formation <i>via</i> pulsed nozzle cluster deposition. Nanoscale Advances, 2020, 2, 4051-4061.	4.6	1
45	2D/3D heterostructure of h-BN/reduced graphite oxide as a remarkable electrode Material for supercapacitor. Journal of Power Sources, 2020, 479, 229092.	7.8	34
46	Water/Ethanol Soluble p-Type Conjugated Polymers for the Use in Organic Photovoltaics. Frontiers in Materials, 2020, 7, .	2.4	6
47	Highly Stable Indacenodithieno[3,2- <i>b</i>) Ithiophene-Based Donor–Acceptor Copolymers for Hybrid Electrochromic and Energy Storage Applications. Macromolecules, 2020, 53, 11106-11119.	4.8	31
48	On the Growth of Evaporated NaF on Phenyl-C61-butyric Acid Methyl Ester and Poly(3-hexylthiophene). Journal of Physical Chemistry C, 2020, 124, 15140-15151.	3.1	2
49	Efficient Passivation and Low Resistivity for p ⁺ -Si/TiO ₂ Contact by Atomic Layer Deposition. ACS Applied Energy Materials, 2020, 3, 6291-6301.	5.1	5
50	CO oxidation on Pt based binary and ternary alloy nanocatalysts: Reaction pathways and electronic descriptor. Applied Surface Science, 2020, 528, 146964.	6.1	14
51	Experimental Depth Profiles of Surfactants, Ions, and Solvent at the Angstrom Scale: Studies of Cationic and Anionic Surfactants and Their Salting Out. Journal of Physical Chemistry B, 2020, 124, 2218-2229.	2.6	18
52	Porous PEI Coating for Copper Ion Storage and Its Controlled Electrochemical Release. Advanced Sustainable Systems, 2020, 4, 1900123.	5.3	9
53	High Efficiency Perovskiteâ€6ilicon Tandem Solar Cells: Effect of Surface Coating versus Bulk Incorporation of 2D Perovskite. Advanced Energy Materials, 2020, 10, 1903553.	19.5	110
54	Competing Segregation of Br ^{â€"} and Cl ^{â€"} to a Surface Coated with a Cationic Surfactant: Direct Measurements of Ion and Solvent Depth Profiles. Journal of Physical Chemistry A, 2020, 124, 11102-11110.	2.5	7

#	Article	IF	CITATIONS
55	The effect of TiCl4 treatment on the performance of dye-sensitized solar cells. Journal of Chemical Physics, 2019, 151, 164704.	3.0	13
56	Investigating the Structure of Self-Assembled Monolayers Related to Biological Cell Membranes. Langmuir, 2019, 35, 14213-14221.	3. 5	11
57	Broadening of van Hove Singularities Measured by Photoemission Spectroscopy of Single- and Mixed-Chirality Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 26683-26694.	3.1	4
58	Ultralow surface energy self-assembled monolayers of iodo-perfluorinated alkanes on silica driven by halogen bonding. Nanoscale, 2019, 11, 2401-2411.	5.6	8
59	Morphological changes of sintered polydopamine coatings. Surface Topography: Metrology and Properties, 2019, 7, 015016.	1.6	6
60	Investigation of Phosphine Ligand Protected Au ₁₃ Clusters on Defect Rich Titania. Journal of Physical Chemistry C, 2019, 123, 6642-6649.	3.1	13
61	Restructuring of Dye Layers in Dye Sensitized Solar Cells: Cooperative Adsorption of N719 and Chenodeoxycholic Acid on Titania. ACS Applied Energy Materials, 2019, 2, 124-130.	5.1	16
62	Sustainable Polysulfides for Oil Spill Remediation: Repurposing Industrial Waste for Environmental Benefit. Advanced Sustainable Systems, 2018, 2, 1800024.	5.3	120
63	Ring type and π electron occupancy decides the Li-ion storage properties of Phagraphene: An example of sp2 hybridized carbon structure. Carbon, 2018, 129, 775-784.	10.3	26
64	Photocatalytic degradation of methylene blue dye using catalyst based on the gold-containing clusters supported on TiO _{2. International Journal of Nanotechnology, 2018, 15, 669.}	0.2	5
65	Influence of Moisture on the Energy-Level Alignment at the MoO ₃ /Organic Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 44163-44172.	8.0	13
66	In situ recombination junction between p-Si and TiO ₂ enables high-efficiency monolithic perovskite/Si tandem cells. Science Advances, 2018, 4, eaau9711.	10.3	122
67	Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes. Nanomaterials, 2018, 8, 448.	4.1	5
68	Dipole Formation at the MoO ₃ /Conjugated Polymer Interface. Advanced Functional Materials, 2018, 28, 1802825.	14.9	24
69	On the Growth of Evaporated LiF on P3HT and PCBM. Journal of Physical Chemistry C, 2018, 122, 23420-23431.	3.1	7
70	Facile Synthesis of an Efficient and Robust Cathode Interface Material for Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 7130-7139.	5.1	16
71	Investigation into the behaviour of aluminium and steel under melt/freeze cyclic conditions. Journal of Energy Storage, 2018, 17, 249-260.	8.1	9
72	Insights into the Oxidant/Polymer Interfacial Growth of Vapor Phase Polymerized PEDOT Thin Films. Advanced Materials Interfaces, 2018, 5, 1800594.	3.7	16

#	Article	lF	Citations
73	Light-Induced Interfacial Dynamics Dramatically Improve the Photocurrent in Dye-Sensitized Solar Cells: An Electrolyte Effect. ACS Applied Materials & Ele	8.0	7
74	Highâ€Speed OLEDs and Areaâ€Emitting Lightâ€Emitting Transistors from a Tetracyclic Lactim Semiconducting Polymer. Advanced Optical Materials, 2018, 6, 1800768.	7.3	19
75	Aggregation Behavior of Ligand-Protected Au ₉ Clusters on Sputtered Atomic Layer Deposition TiO ₂ . Journal of Physical Chemistry C, 2017, 121, 10781-10789.	3.1	19
76	Poly(4-vinylpyridine): A New Interface Layer for Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10929-10936.	8.0	38
77	The direct measurement of the electronic density of states of graphene using metastable induced electron spectroscopy. 2D Materials, 2017, 4, 025068.	4.4	15
78	Adsorption and Desorption of Singleâ€Stranded DNA from Singleâ€Walled Carbon Nanotubes. Chemistry - an Asian Journal, 2017, 12, 1625-1634.	3.3	10
79	Apparatus for the investigation of high-temperature, high-pressure gas-phase heterogeneous catalytic and photo-catalytic materials. Review of Scientific Instruments, 2017, 88, 054101.	1.3	4
80	EXAFS, ab Initio Molecular Dynamics, and NICIS Spectroscopy Studies on an Organic Dye Model at the Dye-Sensitized Solar Cell Photoelectrode Interface. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19773-19779.	8.0	8
81	Thermodynamics and structure of liquid surfaces investigated directly with surface analytical tools**. Annalen Der Physik, 2017, 529, 1600230.	2.4	20
82	Nitrogenâ€Doped CN <i>></i> /CNTs Heteroelectrocatalysts for Highly Efficient Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2017, 7, 1602276.	19.5	102
83	Surface Ordering in Binary Mixtures of Protic Ionic Liquids. Journal of Physical Chemistry Letters, 2017, 8, 4264-4267.	4.6	10
84	Investigation of Ligand-Stabilized Gold Clusters on Defect-Rich Titania. Journal of Physical Chemistry C, 2017, 121, 28007-28016.	3.1	20
85	Ordering in Surfactant Foam Films Transferred onto Hydrophilic and Hydrophobic Substrates. Journal of Physical Chemistry C, 2017, 121, 25967-25977.	3.1	2
86	Versatile PbS Quantum Dot Ligand Exchange Systems in the Presence of Pbâ€Thiolates. Small, 2017, 13, 1602956.	10.0	23
87	Atomically resolved structure of ligand-protected Au9 clusters on TiO2 nanosheets using aberration-corrected STEM. Journal of Chemical Physics, 2016, 144, 114703.	3.0	25
88	A Systematic Density Functional Theory Study of the Complete De-ligation of Ru ₃ (CO) ₁₂ . ChemistrySelect, 2016, 1, 1163-1167.	1.5	8
89	Stability of Polymer Interlayer Modified ITO Electrodes for Organic Solar Cells. Australian Journal of Chemistry, 2016, 69, 735.	0.9	8
90	Grouping and aggregation of ligand protected Au ₉ clusters on TiO ₂ nanosheets. RSC Advances, 2016, 6, 110765-110774.	3.6	17

#	Article	IF	Citations
91	Two-in-one: cathode modification and improved solar cell blend stability through addition of modified fullerenes. Journal of Materials Chemistry A, 2016, 4, 2663-2669.	10.3	27
92	Nanoscale heterogeniety and workfunction variations in ZnO thin films. Applied Surface Science, 2016, 363, 516-521.	6.1	27
93	Surface and Near Surface Area Density of States for Magnetron-Sputtered ZnO and Al-ZnO: A MIES, UPS, and VBXPS Study Investigating Ultrahigh Vacuum Sputter Cleaning and UV Oxygen Plasma. Journal of Physical Chemistry C, 2016, 120, 15772-15784.	3.1	8
94	The effect of counter ions on the far-infrared spectra of tris(triphenylphosphinegold)oxonium dimer salts. RSC Advances, 2015, 5, 74499-74505.	3.6	3
95	Transfer of Ordered Phospholipid Films onto Solid Substrates from a Drained Foam Film. Journal of Physical Chemistry C, 2015, 119, 22496-22503.	3.1	3
96	3D WS ₂ Nanolayers@Heteroatomâ€Doped Graphene Films as Hydrogen Evolution Catalyst Electrodes. Advanced Materials, 2015, 27, 4234-4241.	21.0	389
97	Change of Surface Structure upon Foam Film Formation. ChemPhysChem, 2015, 16, 733-738.	2.1	12
98	Pathway to high throughput, low cost indium-free transparent electrodes. Journal of Materials Chemistry A, 2015, 3, 13892-13899.	10.3	15
99	Electronic and chemical properties of ZnO in inverted organic photovoltaic devices. Organic Electronics, 2015, 24, 131-136.	2.6	24
100	Effect of Sodium Halides on the Surface Structure of Foam Films Stabilized by a Nonionic Surfactant. Journal of Physical Chemistry C, 2015, 119, 441-448.	3.1	13
101	Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathway. Carbon, 2015, 85, 147-158.	10.3	145
102	Valence band structure of PDMS surface and a blend with MWCNTs: A UPS and MIES study of an insulating polymer. Applied Surface Science, 2015, 353, 693-699.	6.1	10
103	Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes. Science and Technology of Advanced Materials, 2015, 16, 025002.	6.1	24
104	Effect of Gold Nanoclusters on the Production of Ti3+ Defect Sites in Titanium Dioxide Nanoparticles under Ultraviolet and Soft X-ray Radiation. Journal of Physical Chemistry C, 2015, 119, 11171-11177.	3.1	14
105	Toward Control of Gold Cluster Aggregation on TiO ₂ via Surface Treatments. Journal of Physical Chemistry C, 2015, 119, 24465-24474.	3.1	39
106	Examining the electrical and chemical properties of reduced graphene oxide with varying annealing temperatures in argon atmosphere. Applied Surface Science, 2015, 356, 719-725.	6.1	18
107	Invisible high workfunction materials on heterogeneous surfaces. Applied Surface Science, 2015, 327, 22-26.	6.1	18
108	Factors influencing the catalytic oxidation of benzyl alcohol using supported phosphine-capped gold nanoparticles. Catalysis Science and Technology, 2015, 5, 1323-1333.	4.1	65

#	Article	IF	Citations
109	Effect of Annealing Temperature of ZnO on the Energy Level Alignment in Inverted Organic Photovoltaics (OPVs). Energy Technology, 2014, 2, 462-468.	3.8	20
110	Phosphine-stabilised Au9 clusters interacting with titania and silica surfaces: The first evidence for the density of states signature of the support-immobilised cluster. Journal of Chemical Physics, 2014, 141, 014702.	3.0	28
111	Deconvolution of NICISS profiles involving elements of similar masses. Nuclear Instruments & Methods in Physics Research B, 2014, 340, 63-66.	1.4	3
112	Examining the role of ultra-thin atomic layer deposited metal oxide barrier layers on CdTe/ITO interface stability during the fabrication of solution processed nanocrystalline solar cells. Solar Energy Materials and Solar Cells, 2014, 125, 164-169.	6.2	21
113	On the correlation between dye coverage and photoelectrochemical performance in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 711-718.	2.8	36
114	XPS and NEXAFS study of fluorine modified TiO2 nano-ovoids reveals dependence of Ti3+ surface population on the modifying agent. RSC Advances, 2014, 4, 20649.	3.6	37
115	Ion Scattering Studies of Molecular Structure at Liquid Surfaces with Applications in Industrial and Biological Systems. Chemical Reviews, 2014, 114, 8361-8387.	47.7	42
116	Identification of the Vibrational Modes in the Far-Infrared Spectra of Ruthenium Carbonyl Clusters and the Effect of Gold Substitution. Inorganic Chemistry, 2014, 53, 4340-4349.	4.0	12
117	Hydrogen sensing using gold nanoclusters supported on tungsten trioxide thin films. International Journal of Hydrogen Energy, 2013, 38, 12865-12877.	7.1	18
118	Structural Determination of Thermally and Hydrazine Treated Graphene Oxide Using Electron Spectroscopic Analysis. Journal of Physical Chemistry C, 2013, 117, 21312-21319.	3.1	20
119	Chemically-synthesised, atomically-precise gold clusters deposited and activated on titania. Physical Chemistry Chemical Physics, 2013, 15, 3917.	2.8	111
120	Far-infrared absorption spectra of synthetically-prepared, ligated metal clusters with Au6, Au8, Au9 and Au6Pd metal cores. RSC Advances, 2013, 3, 22140.	3.6	30
121	Role of zinc oxide thickness on the photovoltaic performance of laminated organic bulk-heterojunction solar cells. Solar Energy Materials and Solar Cells, 2013, 115, 64-70.	6.2	17
122	Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes. Science and Technology of Advanced Materials, 2013, 14, 035004.	6.1	40
123	Chemically synthesised atomically precise gold clusters deposited and activated on titania. Part II. Physical Chemistry Chemical Physics, 2013, 15, 14806.	2.8	78
124	Surface structure of a "non-amphiphilic―protic ionic liquid. Physical Chemistry Chemical Physics, 2012, 14, 5106.	2.8	29
125	Molecular Structure of 3-Aminopropyltriethoxysilane Layers Formed on Silanol-Terminated Silicon Surfaces. Journal of Physical Chemistry C, 2012, 116, 6289-6297.	3.1	345
126	Comparing the charge distribution along the surface normal in the [C6mim]+ ionic liquid with different anions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, 149-153.	4.7	9

#	Article	IF	CITATIONS
127	Composition of the outermost layer and concentration depth profiles of ammonium nitrate ionic liquid surfaces. Physical Chemistry Chemical Physics, 2012, 14, 16088.	2.8	31
128	Formation of N719 Dye Multilayers on Dye Sensitized Solar Cell Photoelectrode Surfaces Investigated by Direct Determination of Element Concentration Depth Profiles. Langmuir, 2012, 28, 9431-9439.	3.5	42
129	DNA capture-probe based separation of double-stranded polymerase chain reaction amplification products in poly(dimethylsiloxane) microfluidic channels. Biomicrofluidics, 2012, 6, 026503.	2.4	5
130	A layered structure at the surface of P3HT/PCBM blends. Physical Chemistry Chemical Physics, 2011, 13, 14993.	2.8	23
131	Role of humidity on indium and tin migration in organic photovoltaic devices. Physical Chemistry Chemical Physics, 2011, 13, 4381.	2.8	70
132	Significant changes of the charge distribution at the surface of an ionic liquid due to the presence of small amounts of water. Physical Chemistry Chemical Physics, 2011, 13, 21301.	2.8	27
133	New Insights into the Structure of PAMAM Dendrimer/Gold Nanoparticle Nanocomposites. Langmuir, 2011, 27, 6759-6767.	3. 5	28
134	Surface modification of poly(dimethylsiloxane) (PDMS) microchannels with DNA capture-probes for potential use in microfluidic DNA analysis systems. Proceedings of SPIE, 2011, , .	0.8	3
135	Effect of the aliphatic chain length on electrical double layer formation at the liquid/vacuum interface in the [Cnmim][BF4] ionic liquid series. Physical Chemistry Chemical Physics, 2011, 13, 17177.	2.8	40
136	Effect of indium and tin contamination on the efficiency and electronic properties of organic bulk hetero-junction solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 3251-3255.	6.2	42
137	Surface modification and chemical surface analysis of biomaterials. Current Opinion in Chemical Biology, 2011, 15, 667-676.	6.1	91
138	Measuring concentration depth profiles at liquid surfaces: Comparing angle resolved X-ray photoelectron spectroscopy and neutral impact collision scattering spectroscopy. Surface Science, 2011, 605, 889-897.	1.9	19
139	Determining concentration depth profiles of thin foam films with neutral impact collision ion scattering spectroscopy. Review of Scientific Instruments, 2010, 81, 113907.	1.3	16
140	Concentration Depth Profiles of Inorganic Ions at Liquid Surfaces. Australian Journal of Chemistry, 2010, 63, 434.	0.9	8
141	Molecular Scale Characterization of the Titaniaâ^'Dyeâ^'Solvent Interface in Dye-Sensitized Solar Cells. Langmuir, 2010, 26, 9612-9616.	3. 5	25
142	Disjoining Pressure Study of Formamide Foam Films Stabilized by Surfactants. Langmuir, 2010, 26, 7752-7760.	3 . 5	17
143	Energy-loss straggling of helium projectiles at low kinetic energies: Deconvolution of concentration depth profiles of inorganic salt solutes in aqueous solutions. Physical Review A, 2008, 78, .	2.5	36
144	Energy-loss straggling of helium projectiles at low kinetic energies. Physical Review A, 2007, 75, .	2,5	25

#	Article	IF	Citations
145	Anions of Alkali Halide Salts at Surfaces of Formamide Solutions:  Concentration Depth Profiles and Surface Topography. Journal of Physical Chemistry C, 2007, 111, 4379-4387.	3.1	29
146	Segregation of Inorganic Ions at Surfaces of Polar Nonaqueous Liquids. ChemPhysChem, 2007, 8, 1457-1463.	2.1	23
147	Electron energy loss spectroscopy of liquid glycerol. Chemical Physics, 2007, 340, 181-186.	1.9	9
148	Increased layer interdiffusion in polyelectrolyte films upon annealing in water and aqueous salt solutions. Physical Chemistry Chemical Physics, 2006, 8, 5462.	2.8	29
149	Chemical Potential of a Nonionic Surfactant in Solution. Journal of Physical Chemistry B, 2006, 110, 24015-24020.	2.6	19
150	Angle resolved ion scattering spectroscopy at surfaces of pure liquids: topography and orientation of molecules. Physical Chemistry Chemical Physics, 2005, 7, 2942.	2.8	13
151	Internal Structure of Polyelectrolyte Multilayers Probed via Neutral Impact Collision Ion Scattering Spectroscopy. Langmuir, 2005, 21, 2598-2604.	3.5	7
152	Angle resolved ion scattering spectroscopy reveals the local topography around atoms in a liquid surface. Physical Chemistry Chemical Physics, 2005, 7, 2948.	2.8	33
153	Activity of surface active substances determined from their surface excess. Physical Chemistry Chemical Physics, 2005, 7, 136.	2.8	58
154	Charge transport and trapping in Cs-doped poly(dialkoxy-p-phenylene vinylene) light-emitting diodes. Physical Review B, 2004, 69, .	3.2	60
155	Interface formation in K doped poly(dialkoxy-p-phenylene vinylene) light-emitting diodes. Journal of Applied Physics, 2003, 94, 5756-5762.	2.5	7
156	Liquid metals as electrodes in polymer light emitting diodes. Journal of Applied Physics, 2003, 93, 3299-3307.	2.5	16
157	Failure of polymeric light emitting diodes by controlled exposure of the polymer-cathode interface to oxygen. Journal Physics D: Applied Physics, 2002, 35, 1103-1108.	2.8	4
158	Degradation effects in poly para-phenylene vinylene derivatives due to controlled oxygen exposure. Synthetic Metals, 2002, 131, 167-174.	3.9	21
159	Ion beam analysis at cryogenic temperatures for polymer light emitting diodes. Nuclear Instruments & Methods in Physics Research B, 2002, 188, 36-40.	1.4	0
160	Surface properties of electrolyte solutions studied with ion beam analysis. Nuclear Instruments & Methods in Physics Research B, 2002, 190, 222-225.	1.4	27
161	Calcium induced oxidation of PPV studied with X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Chemical Physics, 2002, 278, 159-167.	1.9	22
162	Device characteristics of polymeric Light Emitting Diodes (pLED) with controlled oxidation of the calcium cathode during growth. Synthetic Metals, 2001, 121, 1675-1676.	3.9	4

#	Article	IF	CITATION
163	Influence of a partially oxidized calcium cathode on the performance of polymeric light emitting diodes. Journal of Applied Physics, 2001, 90, 1376-1382.	2.5	17
164	Halogens as trace compounds in polymeric light-emitting diodes. Synthetic Metals, 2000, 113, 245-249.	3.9	12
165	Investigations on solutions of tetrabutylonium salts in formamide with NICISS and ICISS: concentration depth profiles and composition of the outermost layer. Surface Science, 2000, 445, 89-99.	1.9	57
166	Impact collision ion scattering spectroscopy (ICISS) and neutral impact collision ion scattering spectroscopy (NICISS) at surfaces of organic liquids. Surface Science, 1998, 405, 138-151.	1.9	99
167	Correlation of Changes in Electronic and Device Properties in Organic Photovoltaic with Exposure to Air. Advanced Materials Interfaces, 0, , 2101657.	3.7	5