Stephen V Frye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3551945/publications.pdf

Version: 2024-02-01

36203 28224 11,864 137 51 105 citations h-index g-index papers 146 146 146 17252 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reprogramming CBX8-PRC1 function with a positive allosteric modulator. Cell Chemical Biology, 2022, 29, 555-571.e11.	2.5	12
2	Target 2035 \hat{a} €" update on the quest for a probe for every protein. RSC Medicinal Chemistry, 2022, 13, 13-21.	1.7	39
3	Discovery of Potent Peptidomimetic Antagonists for Heterochromatin Protein 1 Family Proteins. ACS Omega, 2022, 7, 716-732.	1.6	3
4	Publication Criteria and Requirements for Studies on Protein Kinase Inhibitors─What Is Expected?. Journal of Medicinal Chemistry, 2022, 65, 6973-6974.	2.9	10
5	MERTK activation drives osimertinib resistance in EGFR-mutant non–small cell lung cancer. Journal of Clinical Investigation, 2022, 132, .	3.9	12
6	Abstract 3339: MRX-2843, a dual MERTK and FLT3 inhibitor, mediates synergistic anti-leukemia activity in combination with BCL-2 inhibitors in acute myeloid leukemia and early T-cell precursor acute lymphoblastic leukemia. Cancer Research, 2022, 82, 3339-3339.	0.4	0
7	Discovery and Optimization of $2 < i > H < i> -1 > 2 < sup> -Pyridin-2-one Inhibitors of Mutant Isocitrate Dehydrogenase 1 for the Treatment of Cancer. Journal of Medicinal Chemistry, 2021, 64, 4913-4946.$	2.9	12
8	MerTK activity is not necessary for the proliferation of glioblastoma stem cells. Biochemical Pharmacology, 2021, 186, 114437.	2.0	2
9	Discovery of an H3K36me3-Derived Peptidomimetic Ligand with Enhanced Affinity for Plant Homeodomain Finger Protein 1 (PHF1). Journal of Medicinal Chemistry, 2021, 64, 8510-8522.	2.9	12
10	Improved methods for targeting epigenetic reader domains of acetylated and methylated lysine. Current Opinion in Chemical Biology, 2021, 63, 132-144.	2.8	14
11	UNC5293, a potent, orally available and highly MERTK-selective inhibitor. European Journal of Medicinal Chemistry, 2021, 220, 113534.	2.6	4
12	Development of [18F]MIPS15692, a radiotracer with inÂvitro proof-of-concept for the imaging of MER tyrosine kinase (MERTK) in neuroinflammatory disease. European Journal of Medicinal Chemistry, 2021, 226, 113822.	2.6	5
13	Therapeutic Targeting of Mertk and BCL-2 in T-Cell and Early T-Precursor Acute Lymphoblastic Leukemia. Blood, 2021, 138, 1184-1184.	0.6	3
14	Assessing the Cell Permeability of Bivalent Chemical Degraders Using the Chloroalkane Penetration Assay. ACS Chemical Biology, 2020, 15, 290-295.	1.6	60
15	The histone and non-histone methyllysine reader activities of the UHRF1 tandem Tudor domain are dispensable for the propagation of aberrant DNA methylation patterning in cancer cells. Epigenetics and Chromatin, 2020, 13, 44.	1.8	10
16	Discovery and Characterization of Peptide Inhibitors for Calcium and Integrin Binding Protein 1. ACS Chemical Biology, 2020, 15, 1505-1516.	1.6	11
17	MerTK inhibition decreases immune suppressive glioblastoma-associated macrophages and neoangiogenesis in glioblastoma microenvironment. Neuro-Oncology Advances, 2020, 2, vdaa065.	0.4	16
18	Design and Construction of a Focused DNA-Encoded Library for Multivalent Chromatin Reader Proteins. Molecules, 2020, 25, 979.	1.7	12

#	Article	IF	CITATIONS
19	Kinome profiling of non-Hodgkin lymphoma identifies Tyro3 as a therapeutic target in primary effusion lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16541-16550.	3.3	16
20	Application of a MYC degradation screen identifies sensitivity to CDK9 inhibitors in KRAS-mutant pancreatic cancer. Science Signaling, 2019, 12, .	1.6	46
21	Data-Driven Construction of Antitumor Agents with Controlled Polypharmacology. Journal of the American Chemical Society, 2019, 141, 15700-15709.	6.6	12
22	TAM Family Receptor Kinase Inhibition Reverses MDSC-Mediated Suppression and Augments Anti–PD-1 Therapy in Melanoma. Cancer Immunology Research, 2019, 7, 1672-1686.	1.6	85
23	Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7. Cell Chemical Biology, 2019, 26, 1365-1379.e22.	2.5	38
24	Canonical PRC1 controls sequence-independent propagation of Polycomb-mediated gene silencing. Nature Communications, 2019, 10, 1931.	5.8	54
25	Discovery of selective activators of PRC2 mutant EED-I363M. Scientific Reports, 2019, 9, 6524.	1.6	12
26	A General TR-FRET Assay Platform for High-Throughput Screening and Characterizing Inhibitors of Methyl-Lysine Reader Proteins. SLAS Discovery, 2019, 24, 693-700.	1.4	25
27	Inhibition of Inositol Polyphosphate Kinases by Quercetin and Related Flavonoids: A Structure–Activity Analysis. Journal of Medicinal Chemistry, 2019, 62, 1443-1454.	2.9	38
28	Inhibition of MERTK Promotes Suppression of Tumor Growth in BRAF Mutant and BRAF Wild-Type Melanoma. Molecular Cancer Therapeutics, 2019, 18, 278-288.	1.9	24
29	Quantitative Characterization of Bivalent Probes for a Dual Bromodomain Protein, Transcription Initiation Factor TFIID Subunit 1. Biochemistry, 2018, 57, 2140-2149.	1.2	16
30	MerTK as a therapeutic target in glioblastoma. Neuro-Oncology, 2018, 20, 92-102.	0.6	62
31	MERTK inhibition alters the PD-1 axis and promotes anti-leukemia immunity. JCI Insight, 2018, 3, .	2.3	51
32	Highly Selective MERTK Inhibitors Achieved by a Single Methyl Group. Journal of Medicinal Chemistry, 2018, 61, 10242-10254.	2.9	20
33	Chromatin remodeling controls Kaposi's sarcoma-associated herpesvirus reactivation from latency. PLoS Pathogens, 2018, 14, e1007267.	2.1	32
34	MERTK Promotes Resistance to Irreversible EGFR Tyrosine Kinase Inhibitors in Non–small Cell Lung Cancers Expressing Wild-type ⟨i⟩EGFR⟨/i⟩ Family Members. Clinical Cancer Research, 2018, 24, 6523-6535.	3.2	25
35	Use of Protein Kinase–Focused Compound Libraries for the Discovery of New Inositol Phosphate Kinase Inhibitors. SLAS Discovery, 2018, 23, 982-988.	1.4	15
36	Donated chemical probes for open science. ELife, 2018, 7, .	2.8	80

3

#	Article	IF	Citations
37	MERTK Mediates Intrinsic and Adaptive Resistance to AXL-targeting Agents. Molecular Cancer Therapeutics, 2018, 17, 2297-2308.	1.9	36
38	Mertk Inhibition Promotes Anti-Leukemia Immunity By Reversing T Cell Suppression Via the PD-1 Axis. Blood, 2018, 132, 4019-4019.	0.6	1
39	Discovery of Peptidomimetic Ligands of EED as Allosteric Inhibitors of PRC2. ACS Combinatorial Science, 2017, 19, 161-172.	3.8	43
40	Discovery of Macrocyclic Pyrimidines as MerTKâ€Specific Inhibitors. ChemMedChem, 2017, 12, 207-213.	1.6	25
41	Target class drug discovery. Nature Chemical Biology, 2017, 13, 1053-1056.	3.9	31
42	Peptide Technologies in the Development of Chemical Tools for Chromatinâ€Associated Machinery. Drug Development Research, 2017, 78, 300-312.	1.4	4
43	UNC2025, a MERTK Small-Molecule Inhibitor, Is Therapeutically Effective Alone and in Combination with Methotrexate in Leukemia Models. Clinical Cancer Research, 2017, 23, 1481-1492.	3.2	58
44	A High-Throughput Screening-Compatible Strategy for the Identification of Inositol Pyrophosphate Kinase Inhibitors. PLoS ONE, 2016, 11, e0164378.	1.1	2
45	Structure–Activity Relationships and Kinetic Studies of Peptidic Antagonists of CBX Chromodomains. Journal of Medicinal Chemistry, 2016, 59, 8913-8923.	2.9	28
46	Design, synthesis, and protein methyltransferase activity of a unique set of constrained amine containing compounds. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4436-4440.	1.0	8
47	Design and Synthesis of Novel Macrocyclic Mer Tyrosine Kinase Inhibitors. ACS Medicinal Chemistry Letters, 2016, 7, 1044-1049.	1.3	19
48	Chromodomain Ligand Optimization via Target-Class Directed Combinatorial Repurposing. ACS Chemical Biology, 2016, 11, 2475-2483.	1.6	46
49	Chemical probes for methyl lysine reader domains. Current Opinion in Chemical Biology, 2016, 33, 135-141.	2.8	24
50	Novel Therapeutics Targeting Epigenetics: New Molecules, New Methods. ACS Medicinal Chemistry Letters, 2016, 7, 123-123.	1.3	2
51	A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1. Nature Chemical Biology, 2016, 12, 180-187.	3.9	133
52	High-throughput small molecule screen identifies inhibitors of aberrant chromatin accessibility. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3018-3023.	3.3	26
53	The L3MBTL3 Methyl-Lysine Reader Domain Functions As a Dimer. ACS Chemical Biology, 2016, 11, 722-728.	1.6	8
54	The MERTK/FLT3 inhibitor MRX-2843 overcomes resistance-conferring FLT3 mutations in acute myeloid leukemia. JCI Insight, 2016, 1, e85630.	2.3	55

#	Article	IF	CITATIONS
55	Bone Marrow Stromal Cell Mediated Resistance to Mertk Inhibition in Acute Leukemia. Blood, 2016, 128, 2819-2819.	0.6	4
56	MERTK Inhibition Induces Polyploidy and Promotes Cell Death and Cellular Senescence in Glioblastoma Multiforme. PLoS ONE, 2016, 11, e0165107.	1.1	23
57	MerTK Receptor Tyrosine Kinase Inhibition As a Potential Strategy to Augment Immune-Mediated Clearance of Acute Myeloid Leukemia. Blood, 2016, 128, 4044-4044.	0.6	1
58	Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood, 2015, 125, 346-357.	0.6	188
59	Unlocking the potential of chemical probes for methyl-lysine reader proteins. Future Medicinal Chemistry, 2015, 7, 1831-1833.	1.1	4
60	Identification of a Fragment-like Small Molecule Ligand for the Methyl-lysine Binding Protein, 53BP1. ACS Chemical Biology, 2015, 10, 1072-1081.	1.6	56
61	Tumor Endothelial Cells with Distinct Patterns of TGF \hat{I}^2 -Driven Endothelial-to-Mesenchymal Transition. Cancer Research, 2015, 75, 1244-1254.	0.4	59
62	The promise and peril of chemical probes. Nature Chemical Biology, 2015, 11, 536-541.	3.9	698
63	Small Molecule Inhibition of MERTK Is Efficacious in Non–Small Cell Lung Cancer Models Independent of Driver Oncogene Status. Molecular Cancer Therapeutics, 2015, 14, 2014-2022.	1.9	45
64	Tackling reproducibility in academic preclinical drug discovery. Nature Reviews Drug Discovery, 2015, 14, 733-734.	21.5	62
65	Structure and Inhibition of Microbiome \hat{l}^2 -Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity. Chemistry and Biology, 2015, 22, 1238-1249.	6.2	203
66	Efficacy of a Mer and Flt3 tyrosine kinase small molecule inhibitor, UNC1666, in acute myeloid leukemia. Oncotarget, 2015, 6, 6722-6736.	0.8	38
67	Mer Receptor Tyrosine Kinase. Annual Reports in Medicinal Chemistry, 2014, 49, 301-314.	0.5	2
68	Discovery of a Selective, Substrate-Competitive Inhibitor of the Lysine Methyltransferase SETD8. Journal of Medicinal Chemistry, 2014, 57, 6822-6833.	2.9	81
69	UNC2025 , a Potent and Orally Bioavailable MER/FLT3 Dual Inhibitor. Journal of Medicinal Chemistry, 2014, 57, 7031-7041.	2.9	125
70	The Lipid Kinase PIP5K1C Regulates Pain Signaling and Sensitization. Neuron, 2014, 82, 836-847.	3.8	64
71	MRX2843, a Novel Dual MerTK-FLT3 Inhibitor with Activity Against Resistance-Conferring FLT3 Mutations in Acute Myeloid Leukemia. Blood, 2014, 124, 3757-3757.	0.6	3
72	UNC2025, a Small Molecule MerTK and Flt3 Tyrosine Kinase Inhibitor, Decreases Disease Burden, Prolongs Survival, and Promotes Sensitivity to Chemotherapy in Xenograft Models of Acute Leukemia. Blood, 2014, 124, 998-998.	0.6	0

#	Article	IF	Citations
73	The structure–activity relationships of L3MBTL3 inhibitors: flexibility of the dimer interface. MedChemComm, 2013, 4, 1501.	3.5	24
74	Discovery of an in Vivo Chemical Probe of the Lysine Methyltransferases G9a and GLP. Journal of Medicinal Chemistry, 2013, 56, 8931-8942.	2.9	220
75	Discovery of Mer Specific Tyrosine Kinase Inhibitors for the Treatment and Prevention of Thrombosis. Journal of Medicinal Chemistry, 2013, 56, 9693-9700.	2.9	43
76	Pseudo-Cyclization through Intramolecular Hydrogen Bond Enables Discovery of Pyridine Substituted Pyrimidines as New Mer Kinase Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 9683-9692.	2.9	54
77	Small-Molecule Ligands of Methyl-Lysine Binding Proteins: Optimization of Selectivity for L3MBTL3. Journal of Medicinal Chemistry, 2013, 56, 7358-7371.	2.9	66
78	Bringing together the academic drug discovery community. Nature Reviews Drug Discovery, 2013, 12, 811-812.	21.5	56
79	Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nature Chemical Biology, 2013, 9, 184-191.	3.9	160
80	Exploiting an Allosteric Binding Site of PRMT3 Yields Potent and Selective Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 2110-2124.	2.9	64
81	UNC1062, a new and potent Mer inhibitor. European Journal of Medicinal Chemistry, 2013, 65, 83-93.	2.6	58
82	An Orally Bioavailable Chemical Probe of the Lysine Methyltransferases EZH2 and EZH1. ACS Chemical Biology, 2013, 8, 1324-1334.	1.6	399
83	Targeting Chromatin Readers. Clinical Pharmacology and Therapeutics, 2013, 93, 312-314.	2.3	29
84	Drug discovery in academic institutions. Hematology American Society of Hematology Education Program, 2013, 2013, 300-305.	0.9	2
85	Writing and Rewriting the Epigenetic Code of Cancer Cells: From Engineered Proteins to Small Molecules. Molecular Pharmacology, 2013, 83, 563-576.	1.0	30
86	UNC569, a Novel Small-Molecule Mer Inhibitor with Efficacy against Acute Lymphoblastic Leukemia <i>In Vitro</i> and <i>In Vivo</i> Molecular Cancer Therapeutics, 2013, 12, 2367-2377.	1.9	53
87	MERTK receptor tyrosine kinase is a therapeutic target in melanoma. Journal of Clinical Investigation, 2013, 123, 2257-2267.	3.9	124
88	Application of Multiplexed Kinase Inhibitor Beads to Study Kinome Adaptations in Drug-Resistant Leukemia. PLoS ONE, 2013, 8, e66755.	1.1	60
89	Novel Small Molecule Inhibitors Of The Gas6/TAM Signaling Pathway Inhibit Platelet Aggregation In Vitro and Protect Mice From Arterial and Venous Thrombosis In Vivo. Blood, 2013, 122, 2296-2296.	0.6	1
90	Mer Receptor Tyrosine Kinase Is a Novel Therapeutic Target In Multiple Myeloma. Blood, 2013, 122, 1957-1957.	0.6	0

#	Article	IF	Citations
91	Novel Small Molecule Inhibitors Of The Gas6/TAM Signaling Pathway Mediate Synergistic Inhibition Of Platelet Aggregation In Combination With ADP/P2Y Antagonists. Blood, 2013, 122, 3507-3507.	0.6	O
92	UNC1666, a Dual Mer and Flt-3 Tyrosine Kinase Small Molecule Inhibitor In Acute Myeloid Leukemia. Blood, 2013, 122, 3849-3849.	0.6	0
93	Development Of a Novel Small Molecule Inhibitor Of The Mer Tyrosine Kinase For Treatment Of Acute Lymphoblastic Leukemia. Blood, 2013, 122, 2666-2666.	0.6	0
94	Structure–activity relationships of methyl-lysine reader antagonists. MedChemComm, 2012, 3, 45-51.	3.5	33
95	Dynamic Reprogramming of the Kinome in Response to Targeted MEK Inhibition in Triple-Negative Breast Cancer. Cell, 2012, 149, 307-321.	13.5	637
96	Orally Active Adenosine A1 Receptor Agonists with Antinociceptive Effects in Mice. Journal of Medicinal Chemistry, 2012, 55, 6467-6477.	2.9	25
97	Structure–Functional Selectivity Relationship Studies of β-Arrestin-Biased Dopamine D ₂ Receptor Agonists. Journal of Medicinal Chemistry, 2012, 55, 7141-7153.	2.9	118
98	Discovery of Small Molecule Mer Kinase Inhibitors for the Treatment of Pediatric Acute Lymphoblastic Leukemia. ACS Medicinal Chemistry Letters, 2012, 3, 129-134.	1.3	67
99	AMP Is an Adenosine A1 Receptor Agonist. Journal of Biological Chemistry, 2012, 287, 5301-5309.	1.6	113
100	Mer Receptor Tyrosine Kinase Is A Potential Therapeutic Target in Acute Myeloid Leukemia. Blood, 2012, 120, 1317-1317.	0.6	2
101	Evaluation of UNC569, a Novel Small Molecule Mer Inhibitor for the Treatment of ALL in Vitro and in Vivo Blood, 2012, 120, 2607-2607.	0.6	0
102	A Small Molecule Inhibitor of the Gas6/Mer Pathway Inhibits Platelet Activation and Thrombosis with Equal Efficacy to, but Greater Potency Than, iMer, the Novel MerTK Splice Variant. Blood, 2012, 120, 3303-3303.	0.6	0
103	A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nature Chemical Biology, 2011, 7, 566-574.	3.9	465
104	US academic drug discovery. Nature Reviews Drug Discovery, 2011, 10, 409-410.	21.5	96
105	Too many roads not taken. Nature, 2011, 470, 163-165.	13.7	341
106	Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of \hat{l}_{\pm} -Ketoglutarate-Dependent Dioxygenases. Cancer Cell, 2011, 19, 17-30.	7.7	2,340
107	Biophysical Probes Reveal a "Compromise―Nature of the Methyl-lysine Binding Pocket in L3MBTL1. Journal of the American Chemical Society, 2011, 133, 5357-5362.	6.6	35
108	Small-Molecule Ligands of Methyl-Lysine Binding Proteins. Journal of Medicinal Chemistry, 2011, 54, 2504-2511.	2.9	115

#	Article	IF	Citations
109	Optimization of Cellular Activity of G9a Inhibitors 7-Aminoalkoxy-quinazolines. Journal of Medicinal Chemistry, 2011, 54, 6139-6150.	2.9	127
110	Discovery of β-Arrestin–Biased Dopamine D ₂ Ligands for Probing Signal Transduction Pathways Essential for Antipsychotic Efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18488-18493.	3.3	312
111	UNC569 As Novel Small Molecule Mer Receptor Tyrosine Kinase Inhibitor for Treatment of ALL. Blood, 2011, 118, 2589-2589.	0.6	17
112	Drug Discovery Toward Antagonists of Methyl-Lysine Binding Proteins. Current Chemical Genomics, 2011, 5, 51-61.	2.0	31
113	Identification of Non-Peptide Malignant Brain Tumor (MBT) Repeat Antagonists by Virtual Screening of Commercially Available Compounds. Journal of Medicinal Chemistry, 2010, 53, 7625-7631.	2.9	52
114	Accessing Protein Methyltransferase and Demethylase Enzymology Using Microfluidic Capillary Electrophoresis. Chemistry and Biology, 2010, 17, 695-704.	6.2	41
115	The art of the chemical probe. Nature Chemical Biology, 2010, 6, 159-161.	3.9	357
116	Screening for Inhibitors of Low-Affinity Epigenetic Peptide-Protein Interactions: An AlphaScreenâ,,¢-Based Assay for Antagonists of Methyl-Lysine Binding Proteins. Journal of Biomolecular Screening, 2010, 15, 62-71.	2.6	88
117	Epigenetics: tools and technologies. Drug Discovery Today: Technologies, 2010, 7, e59-e65.	4.0	28
118	Targeting Methyl Lysine. Annual Reports in Medicinal Chemistry, 2010, 45, 329-343.	0.5	9
119	Protein Lysine Methyltransferase G9a Inhibitors: Design, Synthesis, and Structure Activity Relationships of 2,4-Diamino-7-aminoalkoxy-quinazolines Journal of Medicinal Chemistry, 2010, 53, 5844-5857.	2.9	177
120	Inhibitors paradoxically prime kinases. Nature Chemical Biology, 2009, 5, 448-449.	3.9	12
121	Discovery of a 2,4-Diamino-7-aminoalkoxyquinazoline as a Potent and Selective Inhibitor of Histone Lysine Methyltransferase G9a. Journal of Medicinal Chemistry, 2009, 52, 7950-7953.	2.9	206
122	Discovery and Clinical Development of Dutasteride, a Potent Dual 5α- Reductase Inhibitor. Current Topics in Medicinal Chemistry, 2006, 6, 405-421.	1.0	60
123	Oxindole-Based Inhibitors of Cyclin-Dependent Kinase 2 (CDK2):Â Design, Synthesis, Enzymatic Activities, and X-ray Crystallographic Analysis. Journal of Medicinal Chemistry, 2001, 44, 4339-4358.	2.9	259
124	Prevention of Chemotherapy-Induced Alopecia in Rats by CDK Inhibitors. Science, 2001, 291, 134-137.	6.0	160
125	The discovery of potent cRaf1 kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 223-226.	1.0	204
126	Structure-activity relationship homology (SARAH): a conceptual framework for drug discovery in the genomic era. Chemistry and Biology, 1999, 6, R3-R7.	6.2	89

#	Article	IF	CITATIONS
127	Structure-Activity Relationships for Inhibition of Type 1 and 2 Human 5.alphaReductase and Human Adrenal 3.betaHydroxyDELTA.5-steroid Dehydrogenase/3-KetoDELTA.5-steroid Isomerase by 6-Azaandrost-4-en-3-ones: Optimization of the C17 Substituent. Journal of Medicinal Chemistry, 1995, 38, 2621-2627.	2.9	54
128	6-Azasteroids: Structure-Activity Relationships for Inhibition of Type 1 and 2 Human 5.alphaReductase and Human Adrenal 3.betaHydroxyDELTA.5-steroid Dehydrogenase/3-KetoDELTA.5-steroid Isomerase. Journal of Medicinal Chemistry, 1994, 37, 2352-2360.	2.9	66
129	6-Azasteroids: potent dual inhibitors of human type 1 and 2 steroid 5.alphareductase. Journal of Medicinal Chemistry, 1993, 36, 4313-4315.	2.9	56
130	Chelates as intermediates in nucleophilic additions to alkoxy ketones according to Cram's rule (cyclic) Tj ETQq0	0 0 rgBT /	Overlock 10 1
131	Synthesis of 2-aminobenzophenones via rapid halogen-lithium exchange in the presence of a 2-amino-N-methoxy-N-methylbenzamide. Journal of Organic Chemistry, 1991, 56, 3750-3752.	1.7	37
132	Are chelates truly intermediates in Cram's chelate rule?. Journal of the American Chemical Society, 1990, 112, 6130-6131.	6.6	89
133	Asymmetric synthesis based on 1,3-oxathianes. 4. Mechanism of asymmetric induction in the reactions of oxathianyl ketones. Journal of the American Chemical Society, 1988, 110, 484-489.	6.6	53
134	Rapid-injection nuclear magnetic resonance investigation of the reactivity of .alpha and .betaalkoxy ketones with dimethylmagnesium: kinetic evidence for chelation. Journal of the American Chemical Society, 1987, 109, 1862-1863.	6.6	65
135	Prevention of chelation by an oxygen function through protection with a triisopropyl silyl group. Tetrahedron Letters, 1986, 27, 3223-3226.	0.7	37
136	Aymmetric synthesis of () - and ()-citramalate in high enantiomeric purity. Tetrahedron Letters, 1985, 26, 3907-3910.	0.7	52
137	Non-enzymatic asymmetric synthesis of (R)-(-)- and (S)-(+)-mevalolactone in high enantiomeric purity. Journal of Organic Chemistry, 1985, 50, 3402-3404.	1.7	35