Jennifer B H Martiny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3551897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology, 2006, 4, 102-112.	13.6	2,434
2	Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11512-11519.	3.3	2,195
3	Beyond biogeographic patterns: processes shaping the microbial landscape. Nature Reviews Microbiology, 2012, 10, 497-506.	13.6	1,299
4	Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17, 569-586.	13.6	1,138
5	Fundamentals of Microbial Community Resistance and Resilience. Frontiers in Microbiology, 2012, 3, 417.	1.5	1,131
6	The minimum information about a genome sequence (MIGS) specification. Nature Biotechnology, 2008, 26, 541-547.	9.4	1,069
7	Counting the Uncountable: Statistical Approaches to Estimating Microbial Diversity. Applied and Environmental Microbiology, 2001, 67, 4399-4406.	1.4	1,032
8	Drivers of bacterial β-diversity depend on spatial scale. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7850-7854.	3.3	672
9	Microbiomes in light of traits: A phylogenetic perspective. Science, 2015, 350, aac9323.	6.0	652
10	A taxa–area relationship for bacteria. Nature, 2004, 432, 750-753.	13.7	632
11	Global Patterns of Bacterial Beta-Diversity in Seafloor and Seawater Ecosystems. PLoS ONE, 2011, 6, e24570.	1.1	525
12	Population Diversity: Its Extent and Extinction. Science, 1997, 278, 689-692.	6.0	471
13	Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME Journal, 2020, 14, 1-9.	4.4	470
14	Global biogeography of microbial nitrogen-cycling traits in soil. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8033-8040.	3.3	365
15	Microbial abundance and composition influence litter decomposition response to environmental change. Ecology, 2013, 94, 714-725.	1.5	340
16	Effects of dispersal and selection on stochastic assembly in microbial communities. ISME Journal, 2017, 11, 176-185.	4.4	256
17	A COMPARISON OF TAXON CO-OCCURRENCE PATTERNS FOR MACRO- AND MICROORGANISMS. Ecology, 2007, 88, 1345-1353.	1.5	223
18	Decomposition responses to climate depend on microbial community composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11994-11999.	3.3	214

#	Article	IF	CITATIONS
19	Conservation of tropical forest birds in countryside habitats. Ecology Letters, 2002, 5, 121-129.	3.0	181
20	Rapid diversification of coevolving marine <i>Synechococcus</i> and a virus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4544-4549.	3.3	178
21	Testing the functional significance of microbial composition in natural communities. FEMS Microbiology Ecology, 2007, 62, 161-170.	1.3	173
22	Broadscale Ecological Patterns Are Robust to Use of Exact Sequence Variants versus Operational Taxonomic Units. MSphere, 2018, 3, .	1.3	168
23	Patterns of fungal diversity and composition along a salinity gradient. ISME Journal, 2011, 5, 379-388.	4.4	160
24	lt's all relative: ranking the diversity of aquatic bacterial communities. Environmental Microbiology, 2008, 10, 2200-2210.	1.8	159
25	Microbial composition affects the functioning of estuarine sediments. ISME Journal, 2013, 7, 868-879.	4.4	130
26	Is there a cost of virus resistance in marine cyanobacteria?. ISME Journal, 2007, 1, 300-312.	4.4	127
27	Microbial response to simulated global change is phylogenetically conserved and linked with functional potential. ISME Journal, 2016, 10, 109-118.	4.4	123
28	Temporal variation overshadows the response of leaf litter microbial communities to simulated global change. ISME Journal, 2015, 9, 2477-2489.	4.4	112
29	Microbial legacies alter decomposition in response to simulated global change. ISME Journal, 2017, 11, 490-499.	4.4	112
30	Alpha-, beta-, and gamma-diversity of bacteria varies across habitats. PLoS ONE, 2020, 15, e0233872.	1.1	105
31	The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology, 2016, 499, 219-229.	1.1	99
32	Drought and plant litter chemistry alter microbial gene expression and metabolite production. ISME Journal, 2020, 14, 2236-2247.	4.4	79
33	Beta diversity of marine bacteria depends on temporal scale. Ecology, 2013, 94, 1898-1904.	1.5	75
34	Rapid evolution buffers ecosystem impacts of viruses in a microbial food web [§] . Ecology Letters, 2008, 11, 1178-1188.	3.0	73
35	Pathogens promote plant diversity through a compensatory response. Ecology Letters, 2008, 11, 461-469.	3.0	71
36	Microbial composition alters the response of litter decomposition to environmental change. Ecology, 2015, 96, 154-163.	1.5	71

#	Article	IF	CITATIONS
37	Dispersal alters bacterial diversity and composition in a natural community. ISME Journal, 2018, 12, 296-299.	4.4	70
38	High-Fiber, Whole-Food Dietary Intervention Alters the Human Gut Microbiome but Not Fecal Short-Chain Fatty Acids. MSystems, 2021, 6, .	1.7	69
39	Antagonistic Coevolution of Marine Planktonic Viruses and Their Hosts. Annual Review of Marine Science, 2014, 6, 393-414.	5.1	68
40	Bacterial diversity is positively correlated with soil heterogeneity. Ecosphere, 2018, 9, e02079.	1.0	68
41	Evidence for Ecological Flexibility in the Cosmopolitan Genus Curtobacterium. Frontiers in Microbiology, 2016, 7, 1874.	1.5	66
42	Selection and Characterization of Cyanophage Resistance in Marine <i>Synechococcus</i> Strains. Applied and Environmental Microbiology, 2007, 73, 5516-5522.	1.4	64
43	Cellulolytic potential under environmental changes in microbial communities from grassland litter. Frontiers in Microbiology, 2014, 5, 639.	1.5	61
44	Adaptive differentiation and rapid evolution of a soil bacterium along a climate gradient. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	56
45	Macroecological patterns of marine bacteria on a global scale. Journal of Biogeography, 2013, 40, 800-811.	1.4	53
46	Nitrogen Cycling Potential of a Grassland Litter Microbial Community. Applied and Environmental Microbiology, 2015, 81, 7012-7022.	1.4	51
47	Microdiversity of an Abundant Terrestrial Bacterium Encompasses Extensive Variation in Ecologically Relevant Traits. MBio, 2017, 8, .	1.8	49
48	Phylogenetic conservation of bacterial responses to soil nitrogen addition across continents. Nature Communications, 2019, 10, 2499.	5.8	48
49	Functional Metagenomics Reveals Previously Unrecognized Diversity of Antibiotic Resistance Genes in Gulls. Frontiers in Microbiology, 2011, 2, 238.	1.5	46
50	Phylogenetic conservation of soil bacterial responses to simulated global changes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190242.	1.8	46
51	Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries. Frontiers in Microbiology, 2013, 4, 282.	1.5	44
52	Genomic diversification of marine cyanophages into stable ecotypes. Environmental Microbiology, 2016, 18, 4240-4253.	1.8	44
53	Marine cyanophages exhibit local and regional biogeography. Environmental Microbiology, 2013, 15, 1452-1463.	1.8	43
54	Nitrogen and phosphorus enrichment alter the composition of ammonia-oxidizing bacteria in salt marsh sediments. ISME Journal, 2010, 4, 933-944.	4.4	41

#	Article	IF	CITATIONS
55	Alkenone producers inferred from well-preserved 18S rDNA in Greenland lake sediments. Journal of Geophysical Research, 2006, 111, .	3.3	39
56	Abundance of Broad Bacterial Taxa in the Sargasso Sea Explained by Environmental Conditions but Not Water Mass. Applied and Environmental Microbiology, 2014, 80, 2786-2795.	1.4	36
57	Emergence of soil bacterial ecotypes along a climate gradient. Environmental Microbiology, 2018, 20, 4112-4126.	1.8	32
58	Nonlinear responses in salt marsh functioning to increased nitrogen addition. Ecology, 2015, 96, 936-947.	1.5	31
59	Predictable Molecular Adaptation of Coevolving Enterococcus faecium and Lytic Phage EfV12-phi1. Frontiers in Microbiology, 2018, 9, 3192.	1.5	30
60	Cervicovaginal Microbiome Composition Is Associated with Metabolic Profiles in Healthy Pregnancy. MBio, 2020, 11, .	1.8	30
61	Biogeographic Variation in Host Range Phenotypes and Taxonomic Composition of Marine Cyanophage Isolates. Frontiers in Microbiology, 2016, 7, 983.	1.5	26
62	Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genomics, 2020, 21, 26.	1.2	26
63	Routes and rates of bacterial dispersal impact surface soil microbiome composition and functioning. ISME Journal, 2022, 16, 2295-2304.	4.4	26
64	Optimization of a Method To Quantify Soil Bacterial Abundance by Flow Cytometry. MSphere, 2019, 4, .	1.3	25
65	The Effect of Nitrogen Enrichment on C1-Cycling Microorganisms and Methane Flux in Salt Marsh Sediments. Frontiers in Microbiology, 2012, 3, 90.	1.5	24
66	The importance of resolving biogeographic patterns of microbial microdiversity. Microbiology Australia, 2018, 39, 5.	0.1	23
67	Experimental Evidence that Stochasticity Contributes to Bacterial Composition and Functioning in a Decomposer Community. MBio, 2019, 10, .	1.8	23
68	Comparative Genomics of Nitrogen Cycling Pathways in Bacteria and Archaea. Microbial Ecology, 2019, 77, 597-606.	1.4	21
69	Conceptual challenges in microbial community ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190241.	1.8	21
70	Nitrification kinetics and ammoniaâ€oxidizing community respond to warming and altered precipitation. Ecosphere, 2015, 6, 1-17.	1.0	19
71	Maintenance of Sympatric and Allopatric Populations in Free-Living Terrestrial Bacteria. MBio, 2019, 10,	1.8	19
72	Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities. Frontiers in Microbiology, 2015, 6, 109.	1.5	17

5

#	Article	IF	CITATIONS
73	The effect of soil inoculants on seed germination of native and invasive species. Botany, 2017, 95, 469-480.	0.5	16
74	Microbial decomposers not constrained by climate history along a Mediterranean climate gradient in southern California. Ecology, 2018, 99, 1441-1452.	1.5	16
75	The Abundance of Pink-Pigmented Facultative Methylotrophs in the Root Zone of Plant Species in Invaded Coastal Sage Scrub Habitat. PLoS ONE, 2012, 7, e31026.	1.1	15
76	Fiber Force: A Fiber Diet Intervention in an Advanced Course-Based Undergraduate Research Experience (CURE) Course. Journal of Microbiology and Biology Education, 2020, 21, .	0.5	15
77	Bacterial community response to environmental change varies with depth in the surface soil. Soil Biology and Biochemistry, 2022, 172, 108761.	4.2	15
78	History Leaves Its Mark on Soil Bacterial Diversity. MBio, 2016, 7, .	1.8	14
79	Phylogenetic conservation of substrate use specialization in leaf litter bacteria. PLoS ONE, 2017, 12, e0174472.	1.1	14
80	The emergence of microbiome centres. Nature Microbiology, 2020, 5, 2-3.	5.9	13
81	Dispersal and the Microbiome. Microbe Magazine, 2015, 10, 191-196.	0.4	13
82	Relationships between Methylobacteria and Glyphosate with Native and Invasive Plant Species: Implications for Restoration. Restoration Ecology, 2013, 21, 105-113.	1.4	12
83	Structural analysis of a Synechococcus myovirus S-CAM4 and infected cells by atomic force microscopy. Journal of General Virology, 2010, 91, 3095-3104.	1.3	10
84	Microbial community response to a decade of simulated global changes depends on the plant community. Elementa, 2021, 9, .	1.1	10
85	An atomic force microscopy investigation of cyanophage structure. Micron, 2012, 43, 1336-1342.	1.1	9
86	The Microbial Olympics 2016. Nature Microbiology, 2016, 1, 16122.	5.9	7
87	Towards a Natural History of Soil Bacterial Communities. Trends in Microbiology, 2018, 26, 250-252.	3.5	7
88	Differential Response of Bacterial Microdiversity to Simulated Global Change. Applied and Environmental Microbiology, 2022, 88, aem0242921.	1.4	7
89	Microbial Biodiversity. , 2013, , 252-258.		2
90	Microbial Biogeography. , 2013, , 271-279.		1

#	Article	IF	CITATIONS
91	Microbial biodiversity. , 2007, , 1-9.		1
92	Population Diversity, Overview. , 2001, , 168-174.		0
93	Is Throwing an Apple Core Out of the Car Littering?—Microbial Communities in Natural Composting. Frontiers for Young Minds, 2018, 6, .	0.8	0