
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3551625/publications.pdf Version: 2024-02-01

LONG H CHOW

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
6	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
7	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	1.5	1,929
8	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
9	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
10	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
11	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
12	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
13	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
14	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	15.6	825
15	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
16	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	1.5	735
17	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728
18	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	13.7	674

#	Article	IF	CITATIONS
19	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
20	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
21	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
22	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
23	The risks and benefits of longâ€term use of hydroxyurea in sickle cell anemia: A 17.5 year followâ€up. American Journal of Hematology, 2010, 85, 403-408.	2.0	385
24	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	2.9	370
25	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
26	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
27	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
28	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
29	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
30	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
31	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
32	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166
33	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
34	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
35	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	3.0	135
36	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132

#	Article	IF	CITATIONS
37	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
38	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. Physical Review D, 2007, 76, .	1.6	128
39	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008, 77, .	1.6	126
40	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
41	Upper limits on gravitational wave emission from 78 radio pulsars. Physical Review D, 2007, 76, .	1.6	121
42	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	1.6	120
43	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
44	All-sky search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2008, 77, .	1.6	110
45	Demonstration of a passive subpicostrain fiber strain sensor. Optics Letters, 2005, 30, 1923.	1.7	108
46	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
47	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
48	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
49	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
50	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
51	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	1.6	97
52	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1.5	94
53	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
54	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	1.6	92

#	Article	IF	CITATIONS
55	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
56	Upper limit map of a background of gravitational waves. Physical Review D, 2007, 76, .	1.6	90
57	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
58	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
59	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
60	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
61	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	1.5	78
62	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
63	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
64	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
65	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
66	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
67	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	1.6	72
68	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
69	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
70	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
71	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
72	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66

#	Article	IF	CITATIONS
73	Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications. Journal of Lightwave Technology, 2005, 23, 1881-1889.	2.7	65
74	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
75	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64
76	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
77	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
78	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .	1.6	60
79	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
80	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
81	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	1.6	60
82	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
83	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
84	High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing. Applied Optics, 2010, 49, 4029.	2.1	52
85	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
86	Search for gravitational wave radiation associated with the pulsating tail of the SGR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>1806</mml:mn><mml:mo>â^</mml:mo><mml:mn>20</mml:mn>hyper of 27 December 2004 using LIGO. Physical Review D, 2007, 76, .</mml:math 	flare	51
87	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
88	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
89	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47
90	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46

#	Article	IF	CITATIONS
91	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	1.6	46
92	Observation of Gravitational Waves from a Binary Black Hole Merger. , 2017, , 291-311.		45
93	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
94	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
95	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
96	Optical Fiber Sensing Based on Reflection Laser Spectroscopy. Sensors, 2010, 10, 1823-1845.	2.1	41
97	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	1.6	40
98	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
99	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
100	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.</mml:math 	2.9	36
101	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D, 2007, 76, .	1.6	35
102	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	1.6	35
103	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
104	Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies. Optics Express, 2009, 17, 11077.	1.7	34
105	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
106	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
107	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>i³</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters. 2014. 113. 011102.</mml:math 	2.9	32
108	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32

#	Article	IF	CITATIONS
109	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
110	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	1.6	31
111	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
112	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
113	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29
114	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
115	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
116	Measurement of Gouy phase evolution by use of spatial mode interference. Optics Letters, 2004, 29, 2339.	1.7	25
117	Using active resonator impedance matching for shot-noise limited, cavity enhanced amplitude modulated laser absorption spectroscopy. Optics Express, 2008, 16, 7726.	1.7	23
118	Critical coupling control of a microresonator by laser amplitude modulation. Optics Express, 2012, 20, 12622.	1.7	23
119	Laser frequency-noise-limited ultrahigh resolution remote fiber sensing. Optics Express, 2006, 14, 4617.	1.7	22
120	Optical fiber three-axis accelerometer based on lasers locked to π phase-shifted Bragg gratings. Measurement Science and Technology, 2010, 21, 094010.	1.4	21
121	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
122	Photothermal effects in passive fiber Bragg grating resonators. Optics Letters, 2005, 30, 708.	1.7	20
123	Laser frequency noise immunity in multiplexed displacement sensing. Optics Letters, 2011, 36, 672.	1.7	20
124	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
125	Digital Laser Frequency Stabilization Using an Optical Cavity. IEEE Journal of Quantum Electronics, 2010, 46, 1178-1183.	1.0	18
126	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18

#	Article	IF	CITATIONS
127	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
128	A joint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.	1.5	16
129	Status of the Australian Consortium for Interferometric Gravitational Astronomy. Classical and Quantum Gravity, 2006, 23, S41-S49.	1.5	14
130	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14
131	Polarization speed meter for gravitational-wave detection. Physical Review D, 2012, 86, .	1.6	13
132	Ultrasensitive real-time measurement of dissipation and dispersion in a whispering-gallery mode microresonator. Optics Letters, 2013, 38, 1915.	1.7	13
133	Subfrequency noise signal extraction in fiber-optic strain sensors using postprocessing. Optics Letters, 2012, 37, 2169.	1.7	12
134	Suppressing Rayleigh backscatter and code noise from all-fiber digital interferometers. Optics Letters, 2016, 41, 84.	1.7	12
135	All-optical low noise fiber Bragg grating microphone. Applied Optics, 2016, 55, 5570.	2.1	11
136	Bandwidth-division in digitally enhanced optical frequency domain reflectometry. Optics Express, 2013, 21, 4017.	1.7	10
137	Optical-Fiber Accelerometer Array: Nano-g Infrasonic Operation in a Passive 100 km Loop. IEEE Sensors Journal, 2010, 10, 1117-1124.	2.4	9
138	Multi-target CW interferometric acoustic measurements on a single optical beam. Optics Express, 2019, 27, 18477.	1.7	9
139	Using a Passive Fiber Ring Cavity to Generate Shot-Noise-Limited Laser Light for Low-Power Quantum Optics Applications. IEEE Photonics Technology Letters, 2007, 19, 1063-1065.	1.3	7
140	Spot size and Guoy phase invariant telescope for auto-alignment of resonant cavities. Classical and Quantum Gravity, 2004, 21, S909-S914.	1.5	6
141	Technology developments for ACIGA high power test facility for advanced interferometry. Classical and Quantum Gravity, 2005, 22, S199-S208.	1.5	6
142	Long distance high performance remote strain sensing with a fiber Fabry-Perot by radio-frequency laser modulation. , 2006, , .		6
143	A Stabilized Fiber Laser for High-Resolution Low-Frequency Strain Sensing. IEEE Sensors Journal, 2009, 9, 983-986.	2.4	6
144	Experimental demonstration of impedance match locking and control for coupled resonators. Optics Express, 2010, 18, 9314.	1.7	6

#	Article	IF	CITATIONS
145	Alignment locking to suspended Fabry-Perot cavity. General Relativity and Gravitation, 2005, 37, 1601-1608.	0.7	5
146	Experimental demonstration of in-loop intracavity intensity-noise suppression. IEEE Journal of Quantum Electronics, 2005, 41, 434-440.	1.0	5
147	Laser frequency stabilization to molecular resonances for TPF-C, LISA, and MAXIM. , 2006, 6265, 855.		5
148	3-axis accelerometer based on lasers locked to π-shifted fibre Bragg gratings. Proceedings of SPIE, 2009, , .	0.8	5
149	Optical cavity enhanced real-time absorption spectroscopy of CO2 using laser amplitude modulation. Applied Physics Letters, 2014, 105, 053505.	1.5	5
150	Backscatter-immune, polarization managed, all fiber Sagnac sensing interferometer. Optics Express, 2007, 15, 3110.	1.7	4
151	Resolving the range ambiguity in OFDR using digital signal processing. Measurement Science and Technology, 2014, 25, 125102.	1.4	4
152	Ultra-high resolution strain sensing by phase-sensitive interrogation of a passive fiber Bragg resonator. , 2005, , .		3
153	Quasi-static fiber strain sensing with absolute frequency referencing. , 2008, , .		3
154	Coherent Rayleigh Backscatter Phase Noise in Digitally Enhanced Fiber Interferometers. Journal of Lightwave Technology, 2021, 39, 2625-2630.	2.7	3
155	Infrasonic performance of a passively stabilized, all-fiber, optical frequency reference. Optics Express, 2020, 28, 9280.	1.7	3
156	Australia's Role in Gravitational Wave Detection. Publications of the Astronomical Society of Australia, 2003, 20, 223-241.	1.3	2
157	Automatic alignment of a rigid spacer cavity. General Relativity and Gravitation, 2005, 37, 1591-1599.	0.7	2
158	Multiplexed fiber optic acoustic sensors in a 120 km loop using RF modulation. Proceedings of SPIE, 2007, , .	0.8	2
159	Passive nano-g fiber-accelerometer array over 100 km. Proceedings of SPIE, 2009, , .	0.8	2
160	A Shot-Noise Limited Fiber Laser Source by Cascaded Passive Optical Filtering. IEEE Journal of Quantum Electronics, 2010, 46, 976-980.	1.0	2
161	Double Rayleigh scattering in a digitally enhanced, all-fiber optical frequency reference. Optics Express, 2021, 29, 26319.	1.7	2
162	Algebraic cancellation of inter-channel cross talk in multiplexed heterodyne interferometry. Optics Letters, 2021, 46, 5830.	1.7	2

IF # ARTICLE CITATIONS Digitally enhanced molecular dispersion spectroscopy. Optics Letters, 2020, 45, 6290. Status of ACIGA High Power Test Facility for advanced interferometry., 2004, , . 164 1 Interrogation of a passive fiber Bragg grating resonator sensor by current modulation of a diode laser., 2005,,. Rayleigh backscatter mitigation by RF modulation in a 100-km remote fiber sensing system., 2007, 6538, 166 1 371. A 100 km Ultra-High Performance Fiber Sensing System., 2007,,. 168 Multiplexed fiber optic sensor array for geophysical survey. Proceedings of SPIE, 2008, , . 0.8 1 Backscatter immune Mach-Zehnder-Sagnac hybrid interferometric sensor., 2008,,. Algebraic cancellation of polarisation noise in fibre interferometers. Optics Express, 2016, 24, 10486. 170 1.7 1 Compact flexible multi-pass rotary delay line using spinning micro-machined mirrors. Scientific 171 1.6 Reports, 2017, 7, 9299. Polarization impedance measurement cavity enhanced laser absorption spectroscopy. Optics Express, 172 1.7 1 2021, 29, 33836. A Comparison Between Digital and Analog Pound-Drever-Hall Laser Stabilization., 2009, , . 174 Dynamic photothermal resonance push-pull in a fiber Bragg grating Fabry-Perot., 2005,,. 0 Laser frequency noise-limited ultra-sensitive remote fiber strain detection system., 2006, , . Polarization Managed Sagnac Sensing Interferometer with Inherent Backscatter Rejection., 2007,,. 176 0 Shot Noise Limited Fiber Laser Source by Frequency Locking to a Fiber Ring Cavity., 2007, , . Fiber Laser Mode Cleaning by Frequency Locking to a Fiber Ring Cavity., 2007,,. 178 0 Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. DPRVDAQ0556-282176, 022001 (2007)]. 179 1.6 Physical Review D, 2007, 76, .

180 Ultra-Remote Fibre Optic Acoustic Sensing Array based on RF Modulation., 2007,,.

0

JONG H CHOW

0

#	Article	IF	CITATIONS
181	Publisher's Note: Upper limit map of a background of gravitational waves [Phys. Rev. D 76 , 082003 (2007)]. Physical Review D, 2008, 77, .	1.6	0
182	Publisher's Note: Upper limits on gravitational wave emission from 78 radio pulsars [Phys. Rev. D76, 042001 (2007)]. Physical Review D, 2008, 77, .	1.6	0
183	Publisher's Note: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D77, 022001 (2008)]. Physical Review D, 2008, 77, .	1.6	0
184	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. D 76 , 022001 (2007)]. Physical Review D, 2008, 77, .	1.6	0
185	Shot noise limited fiber laser source for sensing applications. , 2008, , .		0
186	Quasi-static fiber strain sensing with FM spectroscopy. , 2008, , .		0
187	Spectroscopic Sensing at the Quantum Limit by Active Cavity Impedance Matching. , 2009, , .		0
188	Optical absorption spectrometry using Laser amplitude modulation. , 2009, , .		0
189	Fiber optic strain sensing using an absolute frequency reference. , 2010, , .		0
190	Servo-modified optical spring. , 2011, , .		0
191	Multiplexed interferometric displacement sensing below the laser frequency noise limit. , 2011, , .		0
192	Quasi-static strain sensing using molecular spectroscopy. Proceedings of SPIE, 2011, , .	0.8	0
193	A passive frequency noise insensitive fiber strain sensor using post processing. Proceedings of SPIE, 2012, , .	0.8	0
194	A Double-Pass Cavity-Enhanced Spectrometer with a Polarization Analyzed Readout. , 2021, , .		0
195	Ultra-Sensitive Remote Fiber Sensing by Radio-Frequency Current Modulation of a Diode Laser. , 2005, ,		0
196	Laser Noise-Limited Ultra-High Performance Remote Sensing with a Fiber-Fabry-Perot. , 2006, , .		0
197	A Stabilized Fiber Laser for Low Frequency, High Resolution Sensing. , 2009, , .		0

A Shot Noise Limited Fiber Laser Source., 2009,,.

#	Article	IF	CITATIONS
199	Gas Analyzer with Cavity Enhanced Amplitude Modulated Laser Absorption Spectroscopy. , 2014, , .		О
200	Quantum Noise Limited Trace Gas Cavity Enhanced Polarization Spectroscopy. , 2018, , .		0
201	Molecular Gas Sensing in the Near Infrared using Digitally Enhanced Dispersion Spectroscopy. , 2021, , .		Ο
202	Stereoscopic audio-band vibrometry with source triangulation and interferometric sensitivity. , 2020, , .		0
203	0.1 Hz / Hz Frequency Stability in a Passive, Optical Fiber Frequency Reference. , 2021, , .		Ο