Pedro Moreno Pimentel-Coelho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3551528/publications.pdf

Version: 2024-02-01

49 papers 1,475 citations

331538 21 h-index 330025 37 g-index

50 all docs

50 docs citations

50 times ranked

2465 citing authors

#	Article	IF	CITATIONS
1	Subacute AMD3100 Treatment Is Not Efficient in Neonatal Hypoxic-Ischemic Rats. Stroke, 2022, 53, 586-594.	1.0	3
2	Heme as an inducer of cerebral damage in hemorrhagic stroke: potential therapeutic implications. Neural Regeneration Research, 2022, 17, 1961.	1.6	1
3	Hyperacute transplantation of umbilical cord mesenchymal stromal cells in a model of severe intracerebral hemorrhage. Future Science OA, 2022, 8, FSO793.	0.9	3
4	Intracerebral Injection of Heme Induces Lipid Peroxidation, Neuroinflammation, and Sensorimotor Deficits. Stroke, 2021, 52, 1788-1797.	1.0	11
5	GD3 synthase deletion alters retinal structure and impairs visual function in mice. Journal of Neurochemistry, 2021, 158, 694-709.	2.1	4
6	IL-10 and IL-12 (P70) Levels Predict the Risk of Covid-19 Progression in Hypertensive Patients: Insights From the BRACE-CORONA Trial. Frontiers in Cardiovascular Medicine, 2021, 8, 702507.	1.1	23
7	CXCR4 and MIF are required for neutrophil extracellular trap release triggered by Plasmodium-infected erythrocytes. PLoS Pathogens, 2020, 16, e1008230.	2.1	35
8	Iso-Oncotic Albumin Mitigates Brain and Kidney Injury in Experimental Focal Ischemic Stroke. Frontiers in Neurology, 2020, 11, 1001.	1.1	6
9	Therapeutic Benefit of the Association of Lodenafil with Mesenchymal Stem Cells on Hypoxia-induced Pulmonary Hypertension in Rats. Cells, 2020, 9, 2120.	1.8	4
10	Human Wharton's jelly mesenchymal stem cells protect neural cells from oxidative stress through paracrine mechanisms. Future Science OA, 2020, 6, FSO627.	0.9	13
11	<p>New Benzofuran N-Acylhydrazone Reduces Cardiovascular Dysfunction in Obese Rats by Blocking TNF-Alpha Synthesis</p> . Drug Design, Development and Therapy, 2020, Volume 14, 3337-3350.	2.0	4
12	Gut Microbiota in Acute Ischemic Stroke: From Pathophysiology to Therapeutic Implications. Frontiers in Neurology, 2020, 11, 598.	1.1	62
13	Intravenous Human Umbilical Cord-Derived Mesenchymal Stromal Cell Administration in Models of Moderate and Severe Intracerebral Hemorrhage. Stem Cells and Development, 2020, 29, 586-598.	1.1	21
14	Editorial: Cell-based Therapies for Stroke: Promising Solution or Dead End?. Frontiers in Neurology, 2020, 11, 171.	1.1	2
15	Dysregulation of placental ABC transporters in a murine model of malaria-induced preterm labor. Scientific Reports, 2019, 9, 11488.	1.6	25
16	Reduction of cardiac and renal dysfunction by new inhibitor of DPP4 in diabetic rats. Pharmacological Reports, 2019, 71, 1190-1200.	1.5	5
17	Preconditioning of Rat Bone Marrow-Derived Mesenchymal Stromal Cells with Toll-Like Receptor Agonists. Stem Cells International, 2019, 2019, 1-18.	1.2	7
18	Neonatal infection leads to increased susceptibility to $\hat{Al^2}$ oligomer-induced brain inflammation, synapse loss and cognitive impairment in mice. Cell Death and Disease, 2019, 10, 323.	2.7	23

#	Article	IF	CITATIONS
19	Human Mesenchymal Stem Cell Therapy Reverses Su5416/Hypoxia-Induced Pulmonary Arterial Hypertension in Mice. Frontiers in Pharmacology, 2018, 9, 1395.	1.6	21
20	Focal ischemic stroke leads to lung injury and reduces alveolar macrophage phagocytic capability in rats. Critical Care, 2018, 22, 249.	2.5	52
21	Development and Application of Nanoparticles in Biomedical Imaging. Contrast Media and Molecular Imaging, 2018, 2018, 1-2.	0.4	11
22	Editorial: Zika Virus Research. Frontiers in Neurology, 2018, 9, 168.	1.1	2
23	Critical role of CD4+ T cells and IFN \hat{I}^3 signaling in antibody-mediated resistance to Zika virus infection. Nature Communications, 2018, 9, 3136.	5.8	64
24	Mesenchymal Stromal Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy. Stem Cells in Clinical Applications, 2017, , 105-120.	0.4	2
25	Zika Virus: What Have We Learnt Since the Start of the Recent Epidemic?. Frontiers in Microbiology, 2017, 8, 1554.	1.5	44
26	Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption. Frontiers in Microbiology, 2017, 8, 2557.	1.5	96
27	CD60b: Enriching Neural Stem/Progenitor Cells from Rat Development into Adulthood. Stem Cells International, 2017, 2017, 1-16.	1.2	4
28	Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases. Stem Cells International, 2016, 2016, 1-16.	1.2	32
29	Review of Preclinical and Clinical Studies of Bone Marrow-Derived Cell Therapies for Intracerebral Hemorrhage. Stem Cells International, 2016, 2016, 1-18.	1.2	14
30	Editorial: New Insights into the Pathophysiology and Treatment of Neonatal Hypoxic–Ischemic Encephalopathy. Frontiers in Neurology, 2016, 7, 192.	1.1	2
31	The heritable path of human physical performance: from single polymorphisms to the "next generationâ€. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 600-612.	1.3	8
32	C–C chemokine receptor type 2 (CCR2) signaling protects neonatal male mice with hypoxic–ischemic hippocampal damage from developing spatial learning deficits. Behavioural Brain Research, 2015, 286, 146-151.	1.2	22
33	Radiopharmaceutical Stem Cell Tracking for Neurological Diseases. BioMed Research International, 2014, 2014, 1-12.	0.9	13
34	The Impact of Ly6C ^{low} Monocytes after Cerebral Hypoxia-Ischemia in Adult Mice. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, e1-e9.	2.4	48
35	Endogenous Regenerative Potential of Neural Stem/Progenitor Cells of the Newborn Brain (An) Tj ETQq1 1 0.784	1314 rgBT 0.1	/Oyerlock 10
36	Neonatal Hypoxic-Ischemic Brain Damage: Human Umbilical Cord Blood Mononuclear Cells Transplantation. Tumors of the Central Nervous System, 2014, , 267-277.	0.1	0

#	Article	IF	CITATIONS
37	Migration of Bone Marrowâ€Derived Cells Into the Central Nervous System in Models of Neurodegeneration. Journal of Comparative Neurology, 2013, 521, 3863-3876.	0.9	54
38	Evidence for a Gender-Specific Protective Role of Innate Immune Receptors in a Model of Perinatal Brain Injury. Journal of Neuroscience, 2013, 33, 11556-11572.	1.7	47
39	The Rise of Cell Therapy Trials for Stroke: Review of Published and Registered Studies. Stem Cells and Development, 2013, 22, 2095-2111.	1.1	68
40	Effects of mild chronic cerebral hypoperfusion and early amyloid pathology on spatial learning and the cellular innate immune response in mice. Neurobiology of Aging, 2013, 34, 679-693.	1.5	44
41	Migration of Bone Marrowâ€Derived Cells Into the Central Nervous System in Models of Neurodegeneration. Journal of Comparative Neurology, 2013, 521, Spc1.	0.9	48
42	Umbilical cord blood mononuclear cell transplantation for neonatal hypoxic–ischemic encephalopathy. Pediatric Research, 2012, 71, 464-473.	1.1	74
43	The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer's disease. European Journal of Neuroscience, 2012, 35, 1917-1937.	1.2	77
44	Neonatal Hypoxic-Ischemic Encephalopathy: Neural Stem/Progenitor Cell Transplantation. , 2012, , 305-314.		0
45	Cell Therapy for Neonatal Hypoxic–Ischemic Encephalopathy. Stem Cells and Development, 2010, 19, 299-310.	1.1	80
46	Human Cord Blood Transplantation in a Neonatal Rat Model of Hypoxic–Ischemic Brain Damage: Functional Outcome Related to Neuroprotection in the Striatum. Stem Cells and Development, 2010, 19, 351-358.	1.1	155
47	Radial glia-like cells persist in the adult rat brain. Brain Research, 2009, 1258, 43-52.	1.1	65
48	Trophic activity derived from bone marrow mononuclear cells increases peripheral nerve regeneration by acting on both neuronal and glial cell populations. Neuroscience, 2009, 159, 540-549.	1.1	68
49	Terapia celular no acidente vascular cerebral. Revista Brasileira De Hematologia E Hemoterapia, 0, 31, 99-103.	0.7	7