Pedro Moreno Pimentel-Coelho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3551528/publications.pdf

Version: 2024-02-01

49 papers 1,475 citations

331670 21 h-index 330143 37 g-index

50 all docs

50 docs citations

50 times ranked

2465 citing authors

#	Article	IF	CITATIONS
1	Human Cord Blood Transplantation in a Neonatal Rat Model of Hypoxic–Ischemic Brain Damage: Functional Outcome Related to Neuroprotection in the Striatum. Stem Cells and Development, 2010, 19, 351-358.	2.1	155
2	Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption. Frontiers in Microbiology, 2017, 8, 2557.	3.5	96
3	Cell Therapy for Neonatal Hypoxic–Ischemic Encephalopathy. Stem Cells and Development, 2010, 19, 299-310.	2.1	80
4	The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer's disease. European Journal of Neuroscience, 2012, 35, 1917-1937.	2.6	77
5	Umbilical cord blood mononuclear cell transplantation for neonatal hypoxic–ischemic encephalopathy. Pediatric Research, 2012, 71, 464-473.	2.3	74
6	Trophic activity derived from bone marrow mononuclear cells increases peripheral nerve regeneration by acting on both neuronal and glial cell populations. Neuroscience, 2009, 159, 540-549.	2.3	68
7	The Rise of Cell Therapy Trials for Stroke: Review of Published and Registered Studies. Stem Cells and Development, 2013, 22, 2095-2111.	2.1	68
8	Radial glia-like cells persist in the adult rat brain. Brain Research, 2009, 1258, 43-52.	2.2	65
9	Critical role of CD4+ T cells and IFN \hat{I}^3 signaling in antibody-mediated resistance to Zika virus infection. Nature Communications, 2018, 9, 3136.	12.8	64
10	Gut Microbiota in Acute Ischemic Stroke: From Pathophysiology to Therapeutic Implications. Frontiers in Neurology, 2020, 11, 598.	2.4	62
11	Migration of Bone Marrowâ€Derived Cells Into the Central Nervous System in Models of Neurodegeneration. Journal of Comparative Neurology, 2013, 521, 3863-3876.	1.6	54
12	Focal ischemic stroke leads to lung injury and reduces alveolar macrophage phagocytic capability in rats. Critical Care, 2018, 22, 249.	5.8	52
13	Migration of Bone Marrowâ€Derived Cells Into the Central Nervous System in Models of Neurodegeneration. Journal of Comparative Neurology, 2013, 521, Spc1.	1.6	48
14	The Impact of Ly6C ^{low} Monocytes after Cerebral Hypoxia-Ischemia in Adult Mice. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, e1-e9.	4.3	48
15	Evidence for a Gender-Specific Protective Role of Innate Immune Receptors in a Model of Perinatal Brain Injury. Journal of Neuroscience, 2013, 33, 11556-11572.	3.6	47
16	Effects of mild chronic cerebral hypoperfusion and early amyloid pathology on spatial learning and the cellular innate immune response in mice. Neurobiology of Aging, 2013, 34, 679-693.	3.1	44
17	Zika Virus: What Have We Learnt Since the Start of the Recent Epidemic?. Frontiers in Microbiology, 2017, 8, 1554.	3.5	44
18	CXCR4 and MIF are required for neutrophil extracellular trap release triggered by Plasmodium-infected erythrocytes. PLoS Pathogens, 2020, 16, e1008230.	4.7	35

#	Article	IF	Citations
19	Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases. Stem Cells International, 2016, 2016, 1-16.	2.5	32
20	Dysregulation of placental ABC transporters in a murine model of malaria-induced preterm labor. Scientific Reports, 2019, 9, 11488.	3.3	25
21	Neonatal infection leads to increased susceptibility to $\hat{A^2}$ oligomer-induced brain inflammation, synapse loss and cognitive impairment in mice. Cell Death and Disease, 2019, 10, 323.	6.3	23
22	IL-10 and IL-12 (P70) Levels Predict the Risk of Covid-19 Progression in Hypertensive Patients: Insights From the BRACE-CORONA Trial. Frontiers in Cardiovascular Medicine, 2021, 8, 702507.	2.4	23
23	C–C chemokine receptor type 2 (CCR2) signaling protects neonatal male mice with hypoxic–ischemic hippocampal damage from developing spatial learning deficits. Behavioural Brain Research, 2015, 286, 146-151.	2.2	22
24	Human Mesenchymal Stem Cell Therapy Reverses Su5416/Hypoxia-Induced Pulmonary Arterial Hypertension in Mice. Frontiers in Pharmacology, 2018, 9, 1395.	3.5	21
25	Intravenous Human Umbilical Cord-Derived Mesenchymal Stromal Cell Administration in Models of Moderate and Severe Intracerebral Hemorrhage. Stem Cells and Development, 2020, 29, 586-598.	2.1	21
26	Review of Preclinical and Clinical Studies of Bone Marrow-Derived Cell Therapies for Intracerebral Hemorrhage. Stem Cells International, 2016, 2016, 1-18.	2.5	14
27	Radiopharmaceutical Stem Cell Tracking for Neurological Diseases. BioMed Research International, 2014, 2014, 1-12.	1.9	13
28	Human Wharton's jelly mesenchymal stem cells protect neural cells from oxidative stress through paracrine mechanisms. Future Science OA, 2020, 6, FSO627.	1.9	13
29	Development and Application of Nanoparticles in Biomedical Imaging. Contrast Media and Molecular Imaging, 2018, 2018, 1-2.	0.8	11
30	Intracerebral Injection of Heme Induces Lipid Peroxidation, Neuroinflammation, and Sensorimotor Deficits. Stroke, 2021, 52, 1788-1797.	2.0	11
31	The heritable path of human physical performance: from single polymorphisms to the "next generationâ€. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 600-612.	2.9	8
32	Terapia celular no acidente vascular cerebral. Revista Brasileira De Hematologia E Hemoterapia, 0, 31, 99-103.	0.7	7
33	Preconditioning of Rat Bone Marrow-Derived Mesenchymal Stromal Cells with Toll-Like Receptor Agonists. Stem Cells International, 2019, 2019, 1-18.	2.5	7
34	Iso-Oncotic Albumin Mitigates Brain and Kidney Injury in Experimental Focal Ischemic Stroke. Frontiers in Neurology, 2020, 11, 1001.	2.4	6
35	Reduction of cardiac and renal dysfunction by new inhibitor of DPP4 in diabetic rats. Pharmacological Reports, 2019, 71, 1190-1200.	3.3	5
36	CD60b: Enriching Neural Stem/Progenitor Cells from Rat Development into Adulthood. Stem Cells International, 2017, 2017, 1-16.	2.5	4

#	Article	IF	CITATIONS
37	Therapeutic Benefit of the Association of Lodenafil with Mesenchymal Stem Cells on Hypoxia-induced Pulmonary Hypertension in Rats. Cells, 2020, 9, 2120.	4.1	4
38	<p>New Benzofuran N-Acylhydrazone Reduces Cardiovascular Dysfunction in Obese Rats by Blocking TNF-Alpha Synthesis</p> . Drug Design, Development and Therapy, 2020, Volume 14, 3337-3350.	4.3	4
39	GD3 synthase deletion alters retinal structure and impairs visual function in mice. Journal of Neurochemistry, 2021, 158, 694-709.	3.9	4
40	Subacute AMD3100 Treatment Is Not Efficient in Neonatal Hypoxic-Ischemic Rats. Stroke, 2022, 53, 586-594.	2.0	3
41	Hyperacute transplantation of umbilical cord mesenchymal stromal cells in a model of severe intracerebral hemorrhage. Future Science OA, 2022, 8, FSO793.	1.9	3
42	Editorial: New Insights into the Pathophysiology and Treatment of Neonatal Hypoxic–Ischemic Encephalopathy. Frontiers in Neurology, 2016, 7, 192.	2.4	2
43	Mesenchymal Stromal Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy. Stem Cells in Clinical Applications, 2017, , 105-120.	0.4	2
44	Editorial: Zika Virus Research. Frontiers in Neurology, 2018, 9, 168.	2.4	2
45	Editorial: Cell-based Therapies for Stroke: Promising Solution or Dead End?. Frontiers in Neurology, 2020, 11, 171.	2.4	2
46	Endogenous Regenerative Potential of Neural Stem/Progenitor Cells of the Newborn Brain (An) Tj ETQq0 0 0 rgB	T /Overlo	ck 10 Tf 50 38
47	Heme as an inducer of cerebral damage in hemorrhagic stroke: potential therapeutic implications. Neural Regeneration Research, 2022, 17, 1961.	3.0	1
48	Neonatal Hypoxic-Ischemic Encephalopathy: Neural Stem/Progenitor Cell Transplantation. , 2012, , 305-314.		0
49	Neonatal Hypoxic-Ischemic Brain Damage: Human Umbilical Cord Blood Mononuclear Cells Transplantation. Tumors of the Central Nervous System, 2014, , 267-277.	0.1	O