

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3551285/publications.pdf Version: 2024-02-01

LIE XII

#	Article	IF	CITATIONS
1	Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy and Environmental Science, 2013, 6, 994.	15.6	780
2	Conversion of furfural into cyclopentanone over Ni–Cu bimetallic catalysts. Green Chemistry, 2013, 15, 1932.	4.6	294
3	A new and environmentally benign precursor for the synthesis of mesoporous g-C3N4 with tunable surface area. Physical Chemistry Chemical Physics, 2013, 15, 4510.	1.3	225
4	The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials. Journal of Materials Chemistry, 2012, 22, 3457.	6.7	165
5	Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen. Green Chemistry, 2011, 13, 554.	4.6	150
6	Dehydrogenation of propane over spinel-type gallia–alumina solid solution catalysts. Journal of Catalysis, 2008, 256, 293-300.	3.1	127
7	Mesoporous carbon nitride grafted with n-bromobutane: a high-performance heterogeneous catalyst for the solvent-free cycloaddition of CO ₂ to propylene carbonate. Catalysis Science and Technology, 2015, 5, 447-454.	2.1	120
8	Dehydrogenation of propane over In2O3–Al2O3 mixed oxide in the presence of carbon dioxide. Journal of Catalysis, 2010, 272, 101-108.	3.1	115
9	Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate. Applied Catalysis A: General, 2015, 496, 1-8.	2.2	111
10	Desilylationâ€Activated Propargylic Transformation: Enantioselective Copperâ€Catalyzed [3+2] Cycloaddition of Propargylic Esters with βâ€Naphthol or Phenol Derivatives. Angewandte Chemie - International Edition, 2016, 55, 5014-5018.	7.2	108
11	Production of Diethyl Terephthalate from Biomassâ€Derived Muconic Acid. Angewandte Chemie - International Edition, 2016, 55, 249-253.	7.2	108
12	Liquid Phase Oxidation of Toluene to Benzaldehyde with Molecular Oxygen over Copper-Based Heterogeneous Catalysts. Advanced Synthesis and Catalysis, 2005, 347, 1987-1992.	2.1	106
13	High Yield Production of Natural Phenolic Alcohols from Woody Biomass Using a Nickelâ€Based Catalyst. ChemSusChem, 2016, 9, 3353-3360.	3.6	104
14	Selective oxidative C–C bond cleavage of a lignin model compound in the presence of acetic acid with a vanadium catalyst. Green Chemistry, 2015, 17, 4968-4973.	4.6	98
15	Copper-Catalyzed Asymmetric Formal [3 + 2] Cycloaddition of Propargylic Acetates with Hydrazines: Enantioselective Synthesis of Optically Active 2-Pyrazolines. ACS Catalysis, 2015, 5, 5026-5030.	5.5	90
16	Immobilized Ru Clusters in Nanosized Mesoporous Zirconium Silica for the Aqueous Hydrogenation of Furan Derivatives at Room Temperature. ChemCatChem, 2013, 5, 2822-2826.	1.8	89
17	Graphene oxide grafted hydroxyl-functionalized ionic liquid: A highly efficient catalyst for cycloaddition of CO2 with epoxides. Applied Catalysis A: General, 2016, 509, 111-117.	2.2	89
18	Fluoride-free and low concentration template synthesis of hierarchical Sn-Beta zeolites: efficient catalysts for conversion of glucose to alkyl lactate. Green Chemistry, 2017, 19, 692-701.	4.6	88

#	Article	IF	CITATIONS
19	Secondary alcohols oxidation with hydrogen peroxide catalyzed by [n-C16H33N(CH3)3]3PW12O40: Transform-and-retransform process between catalytic precursor and catalytic activity species. Journal of Molecular Catalysis A, 2008, 289, 22-27.	4.8	86
20	Preparation of superhydrophobic cauliflower-like silica nanospheres with tunable water adhesion. Journal of Materials Chemistry, 2011, 21, 6962.	6.7	84
21	Microporous carbon nitride as an effective solid base catalyst for Knoevenagel condensation reactions. Journal of Molecular Catalysis A, 2013, 372, 105-113.	4.8	82
22	Aqueous phase hydrogenation of furfural to tetrahydrofurfuryl alcohol on alkaline earth metal modified Ni/Al ₂ 0 ₃ . RSC Advances, 2016, 6, 51221-51228.	1.7	82
23	A strategy for generating high-quality cellulose and lignin simultaneously from woody biomass. Green Chemistry, 2017, 19, 4849-4857.	4.6	82
24	Supported indium oxide as novel efficient catalysts for dehydrogenation of propane with carbon dioxide. Applied Catalysis A: General, 2010, 377, 35-41.	2.2	81
25	In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nature Communications, 2020, 11, 4773.	5.8	81
26	Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. Energies, 2015, 8, 4096-4117.	1.6	75
27	Depolymerization of cellulose to glucose by oxidation–hydrolysis. Green Chemistry, 2015, 17, 1519-1524.	4.6	74
28	Mesostructured graphitic carbon nitride as a new base catalyst for the efficient synthesis of dimethyl carbonate by transesterification. Catalysis Science and Technology, 2013, 3, 3192.	2.1	73
29	Graphene oxide immobilized with ionic liquids: facile preparation and efficient catalysis for solvent-free cycloaddition of CO ₂ to propylene carbonate. RSC Advances, 2015, 5, 72361-72368.	1.7	73
30	Chiral Tridentate P,N,N Ligands for Highly Enantioselective Copper atalyzed Propargylic Amination with both Primary and Secondary Amines as Nucleophiles. Advanced Synthesis and Catalysis, 2012, 354, 2854-2858.	2.1	71
31	Robust Photocatalytic H2O2 Production by Octahedral Cd3(C3N3S3)2 Coordination Polymer under Visible Light. Scientific Reports, 2015, 5, 16947.	1.6	71
32	Cu2O: a Simple and Efficient Reusable Catalyst for N-arylation of Nitrogen-containing Heterocycles with Aryl Halides. Catalysis Letters, 2008, 122, 344-348.	1.4	70
33	Schiff base polymers derived from 2,5-diformylfuran. Polymer International, 2013, 62, 1517-1523.	1.6	70
34	Carboxylic acid-modified metal oxide catalyst for selectivity-tunable aerobic ammoxidation. Nature Communications, 2018, 9, 933.	5.8	69
35	Synthesis and properties of furan-based imine-linked porous organic frameworks. Polymer Chemistry, 2012, 3, 2346.	1.9	66
36	Mesostructured Ni-doped ceria as an efficient catalyst for styrene synthesis by oxidative dehydrogenation of ethylbenzene. Applied Catalysis A: General, 2011, 405, 142-148.	2.2	65

#	Article	IF	CITATIONS
37	Synthesis of Three-Dimensional Mesostructured Graphitic Carbon Nitride Materials and their Application as Heterogeneous Catalysts for Knoevenagel Condensation Reactions. Catalysis Letters, 2013, 143, 600-609.	1.4	65
38	Vanadia supported on mesoporous carbon nitride as a highly efficient catalyst for hydroxylation of benzene to phenol. Catalysis Science and Technology, 2015, 5, 1504-1513.	2.1	65
39	Aerobic oxidation of primary aliphatic alcohols over bismuth oxide supported platinum catalysts in water. Green Chemistry, 2013, 15, 2215.	4.6	64
40	Utilization of Environmentally Benign Dicyandiamide as a Precursor for the Synthesis of Ordered Mesoporous Carbon Nitride and its Application in Baseâ€Catalyzed Reactions. Chemistry - an Asian Journal, 2014, 9, 3269-3277.	1.7	62
41	Selective Hydrogenation of Benzene to Cyclohexene Over Colloidal Ruthenium Catalyst Stabilized by Silica. Catalysis Letters, 2006, 109, 175-180.	1.4	61
42	Metal halides supported on mesoporous carbon nitride as efficient heterogeneous catalysts for the cycloaddition of CO2. Journal of Molecular Catalysis A, 2015, 403, 77-83.	4.8	60
43	Enantioselective Copperâ€Catalyzed Decarboxylative Propargylic Alkylation of Propargylic Esters with βâ€Keto Acids. Advanced Synthesis and Catalysis, 2014, 356, 3231-3236.	2.1	58
44	Conversion of dihydroxyacetone to methyl lactate catalyzed by highly active hierarchical Sn-USY at room temperature. Catalysis Science and Technology, 2016, 6, 1757-1763.	2.1	58
45	Covalent triazine framework catalytic oxidative cleavage of lignin models and organosolv lignin. Green Chemistry, 2018, 20, 1270-1279.	4.6	57
46	A new application of clay-supported vanadium oxide catalyst to selective hydroxylation of benzene to phenol. Applied Clay Science, 2006, 33, 1-6.	2.6	56
47	tert-Butyl hydroperoxide (TBHP)-mediated oxidative self-coupling of amines to imines over a α-MnO ₂ catalyst. Green Chemistry, 2014, 16, 2523-2527.	4.6	56
48	Ionic liquid immobilized on mesocellular silica foam as an efficient heterogeneous catalyst for the synthesis of dimethyl carbonate via transesterification. Applied Catalysis A: General, 2013, 464-465, 357-363.	2.2	55
49	Synthesis of Fe, Co, and Mn substituted AlPO-5 molecular sieves and their catalytic activities in the selective oxidation of cyclohexane. Journal of Porous Materials, 2008, 15, 7-12.	1.3	54
50	Direct Oxidation of Toluene to Benzoic Acid with Molecular Oxygen over Manganese Oxides. Catalysis Letters, 2006, 108, 137-140.	1.4	53
51	Advances in selective catalytic transformation of ployols to value-added chemicals. Chinese Journal of Catalysis, 2013, 34, 492-507.	6.9	53
52	Highly Efficient Oxidation of Ethyl Lactate to Ethyl Pyruvate Catalyzed by TS-1 Under Mild Conditions. ACS Catalysis, 2018, 8, 1287-1296.	5.5	53
53	Highly Efficient and Metal-Free Aerobic Hydrocarbons Oxidation Process by ano-Phenanthroline-Mediated Organocatalytic System. Advanced Synthesis and Catalysis, 2005, 347, 1953-1957.	2.1	51
54	Binding Energy as Driving Force for Controllable Reconstruction of Hydrogen Bonds with Molecular Scissors. Journal of the American Chemical Society, 2020, 142, 6085-6092.	6.6	51

#	Article	IF	CITATIONS
55	Ni/NaX: A Bifunctional Efficient Catalyst for Selective Hydrogenolysis of Glycerol. Catalysis Letters, 2010, 134, 184-189.	1.4	50
56	Facile alkali-assisted synthesis of g-C ₃ N ₄ materials and their high-performance catalytic application in solvent-free cycloaddition of CO ₂ to epoxides. RSC Advances, 2016, 6, 55382-55392.	1.7	49
57	Construction of Axially Chiral Arylborons via Atroposelective Miyaura Borylation. Journal of the American Chemical Society, 2021, 143, 10048-10053.	6.6	48
58	Palladium nanoparticles supported on mesoporous carbon nitride for efficiently selective oxidation of benzyl alcohol with molecular oxygen. Applied Catalysis A: General, 2017, 542, 380-388.	2.2	48
59	Selfâ€Aligned Singleâ€Crystal Graphene Grains. Advanced Functional Materials, 2014, 24, 1664-1670.	7.8	47
60	Formation of Strong Basicity on Covalent Triazine Frameworks as Catalysts for the Oxidation of Methylene Compounds. ACS Applied Materials & Interfaces, 2018, 10, 12612-12617.	4.0	47
61	Efficient synthesis of dimethyl carbonate via transesterification of ethylene carbonate over a new mesoporous ceria catalyst. Applied Catalysis A: General, 2014, 484, 1-7.	2.2	46
62	Catalytic selective hydrogenation and rearrangement of 5-hydroxymethylfurfural to 3-hydroxymethyl-cyclopentone over a bimetallic nickel–copper catalyst in water. Green Chemistry, 2019, 21, 1702-1709.	4.6	46
63	The efficient liquidâ€phase oxidation of aromatic hydrocarbons by molecular oxygen in the presence of MnCO ₃ . Journal of Chemical Technology and Biotechnology, 2007, 82, 620-625.	1.6	45
64	Catalytic oxidation of glycerol to tartronic acid over Au/HY catalyst under mild conditions. Chinese Journal of Catalysis, 2014, 35, 1653-1660.	6.9	45
65	Catalytic aerobic oxidation of ethylbenzene over Co/SBA-15. Catalysis Letters, 2007, 113, 104-108.	1.4	44
66	Fast Aqueous/Organic Hydrogenation of Arenes, Olefins and Carbonyl Compounds by Poly(N-Vinylpyrrolidone)-Ru as Amphiphilic Microreactor System. Advanced Synthesis and Catalysis, 2006, 348, 857-861.	2.1	42
67	Direct conversion of fructose-based carbohydrates to 5-ethoxymethylfurfural catalyzed by AlCl3·6H2O/BF3·(Et)2O in ethanol. Journal of Energy Chemistry, 2013, 22, 93-97.	7.1	41
68	Synthesis of mesoporous carbon nitride via a novel detemplation method and its superior performance in base-catalyzed reactions. Catalysis Science and Technology, 2016, 6, 4192-4200.	2.1	41
69	Direct catalytic hydroxylation of benzene to phenol catalyzed by vanadia supported on exfoliated graphitic carbon nitride. Applied Catalysis A: General, 2018, 549, 31-39.	2.2	40
70	Comprehensive insight into the support effect of graphitic carbon nitride for zinc halides on the catalytic transformation of CO ₂ into cyclic carbonates. Catalysis Science and Technology, 2018, 8, 5582-5593.	2.1	40
71	Superhydrophobic SiO2-based nanocomposite modified with organic groups as catalyst for selective oxidation of ethylbenzene. Journal of Materials Chemistry A, 2014, 2, 8126.	5.2	39
72	Oxidation ofp-Cresol top-Hydroxybenzaldehyde with Molecular Oxygen in the Presence of CuMn-Oxide Heterogeneous Catalyst. Advanced Synthesis and Catalysis, 2004, 346, 633-638.	2.1	38

#	Article	IF	CITATIONS
73	Efficient metalâ€free aerobic oxidation of aromatic hydrocarbons utilizing arylâ€ŧetrahalogenated Nâ€hydroxyphthalimides and 1,4â€diaminoâ€2,3â€dichloroanthraquinone. Journal of Chemical Technology and Biotechnology, 2008, 83, 1364-1369.	1.6	38
74	Facile Synthesis of Fe-Loaded Mesoporous Silica by a Combined Detemplationâ^'Incorporation Process through Fenton's Chemistry. Journal of Physical Chemistry C, 2008, 112, 16575-16583.	1.5	38
75	Additive-free aerobic oxidative dehydrogenation of N-heterocycles under catalysis by NiMn layered hydroxide compounds. Journal of Catalysis, 2018, 361, 1-11.	3.1	38
76	An amphiphilic graphene oxide-immobilized polyoxometalate-based ionic liquid: A highly efficient triphase transfer catalyst for the selective oxidation of alcohols with aqueous H2O2. Molecular Catalysis, 2017, 443, 262-269.	1.0	37
77	Highly Selective Ce–Ni–O Catalysts for Efficient Low Temperature Oxidative Dehydrogenation of Propane. Catalysis Letters, 2009, 130, 350-354.	1.4	36
78	Synergistic effect of vanadium–phosphorus promoted oxidation of benzylic alcohols with molecular oxygen in water. Green Chemistry, 2010, 12, 590.	4.6	36
79	Direct Topâ€Down Fabrication of Largeâ€Area Graphene Arrays by an In Situ Etching Method. Advanced Materials, 2015, 27, 4195-4199.	11.1	36
80	Selective synthesis of 2,5-bis(aminomethyl)furan <i>via</i> enhancing the catalytic dehydration–hydrogenation of 2,5-diformylfuran dioxime. Green Chemistry, 2018, 20, 2697-2701.	4.6	35
81	Mesostructured CeO2 as an Effective Catalyst for Styrene Synthesis by Oxidative Dehydrogenation of Ethylbenzene. Catalysis Letters, 2009, 133, 307-313.	1.4	34
82	Preparation of self-assembled cobalt hydroxide nanoflowers and the catalytic decomposition of cyclohexyl hydroperoxide. Journal of Materials Chemistry, 2011, 21, 12609.	6.7	34
83	A Complexation Promoted Organic Nâ€Hydroxy Catalytic System for Selective Oxidation of Toluene. Advanced Synthesis and Catalysis, 2011, 353, 226-230.	2.1	34
84	Liquid-phase oxidation of toluene by molecular oxygen over copper manganese oxides. Catalysis Letters, 2006, 110, 255-260.	1.4	33
85	Enhanced Activity of Spinel-type Ga2O3–Al2O3 Mixed Oxide for the Dehydrogenation of Propane in the Presence of CO2. Catalysis Letters, 2008, 124, 369-375.	1.4	33
86	Electronic Effect of Substituent of Quinones on their Catalytic Performance in Hydrocarbons Oxidation. Catalysis Letters, 2008, 125, 154-159.	1.4	33
87	Three-dimensional ordered mesoporous carbon nitride with large mesopores: Synthesis and application towards base catalysis. Microporous and Mesoporous Materials, 2014, 198, 223-229.	2.2	33
88	Immobilized Ni Clusters in Mesoporous Aluminum Silica Nanospheres for Catalytic Hydrogenolysis of Lignin. ACS Sustainable Chemistry and Engineering, 2019, 7, 19034-19041.	3.2	32
89	Switching acidity on manganese oxide catalyst with acetylacetones for selectivity-tunable amines oxidation. Nature Communications, 2019, 10, 2338.	5.8	32
90	Simple preparation of MgO/g-C3N4 catalyst and its application for catalytic synthesis of dimethyl carbonate via transesterification. Catalysis Communications, 2017, 95, 72-76.	1.6	31

#	Article	IF	CITATIONS
91	Chemical Reactivities of Magnesium Nanopowders. Journal of Nanoparticle Research, 2001, 3, 23-26.	0.8	30
92	Preparation and characteristic of a new class of silica/polyimide nanocomposites. Journal of Materials Science, 2002, 37, 3085-3088.	1.7	30
93	The oxygen activated by the active vanadium species for the selective oxidation of benzene to phenol. Catalysis Letters, 2006, 111, 203-205.	1.4	30
94	Trace Waterâ€Promoted Oxidation of Benzylic Alcohols with Molecular Oxygen Catalyzed by Vanadyl Sulfate and Sodium Nitrite under Mild Conditions. Advanced Synthesis and Catalysis, 2009, 351, 558-562.	2.1	30
95	Au–Pd alloy cooperates with covalent triazine frameworks for the catalytic oxidative cleavage of β-O-4 linkages. Green Chemistry, 2019, 21, 6707-6716.	4.6	30
96	Preparation of mesoporous graphitic carbon nitride using hexamethylenetetramine as a new precursor and catalytic application in the transesterification of Î ² -keto esters. Catalysis Science and Technology, 2014, 4, 2126.	2.1	29
97	Al-Doping Promoted Aerobic Amidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxamide over Cryptomelane. ACS Sustainable Chemistry and Engineering, 2018, 6, 8048-8054.	3.2	29
98	Liquid-phase oxidation of toluene by molecular oxygen over copper manganese oxides. Catalysis Letters, 2006, 110, 149-154.	1.4	28
99	A novel, shape-selective H-MCM-22/MCM-41 composite catalyst: Synthesis, characterization and catalytic performance. Catalysis Communications, 2010, 12, 95-99.	1.6	28
100	Chemical vapor deposition of bilayer graphene with layer-resolved growth through dynamic pressure control. Journal of Materials Chemistry C, 2016, 4, 7464-7471.	2.7	28
101	Transesterification of ethylene carbonate to dimethyl carbonate catalyzed by CeO2 materials with various morphologies. Catalysis Communications, 2018, 106, 6-10.	1.6	27
102	Au/Mg(OH)2: Highly efficient for selective oxidation of 1,2-propanediol to lactic acid with molecular oxygen. Science China Chemistry, 2010, 53, 1497-1501.	4.2	26
103	Preparation of hydrophobic hollow silica nanospheres with porous shells and their application in pollutant removal. RSC Advances, 2013, 3, 1158-1164.	1.7	26
104	Catalytic conversion of 5-hydroxymethylfurfural into 2,5-furandiamidine dihydrochloride. Green Chemistry, 2016, 18, 974-978.	4.6	26
105	Efficient Synthesis of 2,5-Dicyanofuran from Biomass-Derived 2,5-Diformylfuran via an Oximation–Dehydration Strategy. ACS Sustainable Chemistry and Engineering, 2018, 6, 2888-2892.	3.2	26
106	Activation of Molecular Oxygen Using Durable Cobalt Encapsulated with Nitrogenâ€Đoped Graphitic Carbon Shells for Aerobic Oxidation of Ligninâ€Derived Alcohols. Chemistry - A European Journal, 2018, 24, 4653-4661.	1.7	26
107	Catalytic production of low-carbon footprint sustainable natural gas. Nature Communications, 2022, 13, 258.	5.8	26
108	Vinylidenedithiophenmethyleneoxindole: a centrosymmetric building block for donor–acceptor copolymers. Polymer Chemistry, 2016, 7, 1413-1421.	1.9	25

#	Article	IF	CITATIONS
109	Vanadyl acetylacetonate grafted on ordered mesoporous silica KIT-6 and its enhanced catalytic performance for direct hydroxylation of benzene to phenol. Microporous and Mesoporous Materials, 2019, 285, 223-230.	2.2	25
110	Production of lactic acid derivatives from sugars over post-synthesized Sn-Beta zeolite promoted by WO3. Food Chemistry, 2019, 289, 285-291.	4.2	25
111	Catalytic Activation of Carbon–Hydrogen Bonds in Lignin Linkages over Strong-Base-Modified Covalent Triazine Frameworks for Lignin Oxidative Cleavage. ACS Catalysis, 2020, 10, 7526-7534.	5.5	25
112	Hydrogenâ€Bindingâ€Initiated Activation of Oâ^'H Bonds on a Nitrogenâ€Doped Surface for the Catalytic Oxidation of Biomass Hydroxyl Compounds. Angewandte Chemie - International Edition, 2021, 60, 18103-18110.	7.2	25
113	CN and NH Bond Metathesis Reactions Mediated by Carbon Dioxide. ChemSusChem, 2015, 8, 2066-2072.	3.6	24
114	Direct hydroxylation of benzene to phenol with molecular oxygen over vanadium oxide nanospheres and study of its mechanism. RSC Advances, 2015, 5, 94164-94170.	1.7	23
115	Aluminum Containing MCF Silica as Highly Efficient Solid Acid Catalyst for Alcohol Esterification. Catalysis Letters, 2008, 125, 62-68.	1.4	22
116	Facile preparation of SBA-15-supported carbon nitride materials for high-performance base catalysis. Microporous and Mesoporous Materials, 2015, 211, 105-112.	2.2	22
117	Regionalized Techno-Economic Assessment and Policy Analysis for Biomass Molded Fuel in China. Energies, 2015, 8, 13846-13863.	1.6	21
118	Synthesis of FeCoMnAPO-5 Molecular Sieve and Catalytic Activity in Cyclohexane Oxidation by Oxygen. Catalysis Letters, 2005, 99, 231-234.	1.4	20
119	Mechanistic studies on the VO(acac) ₂ -catalyzed oxidative cleavage of lignin model compounds in acetic acid. RSC Advances, 2016, 6, 110229-110234.	1.7	20
120	Facile synthesis of Fe-containing graphitic carbon nitride materials and their catalytic application in direct hydroxylation of benzene to phenol. Chinese Journal of Catalysis, 2018, 39, 1263-1271.	6.9	20
121	Advances in the Synthesis of Mesoporous Carbon Nitride Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 1913-1928.	2.2	20
122	Facile synthesis of highly stable and well-dispersed mesoporous ZrO2/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene. Physical Chemistry Chemical Physics, 2010, 12, 10996.	1.3	19
123	A hybrid sol–gel synthesis of mesostructured SiC with tunable porosity and its application as a support for propane oxidative dehydrogenation. Physical Chemistry Chemical Physics, 2011, 13, 10111.	1.3	19
124	Mesoporous strong base supported cobalt oxide as a catalyst for the oxidation of ethylbenzene. Catalysis Science and Technology, 2014, 4, 3606-3610.	2.1	19
125	A Schiff-base-type vanadyl complex grafted on mesoporous carbon nitride: a new efficient catalyst for hydroxylation of benzene to phenol. RSC Advances, 2015, 5, 92526-92533.	1.7	19
126	Preparation of mesoporous carbon nitride materials using urea and formaldehyde as precursors and catalytic application as solid bases. Applied Catalysis A: General, 2017, 538, 221-229.	2.2	19

JIE XU

#	Article	IF	CITATIONS
127	Production of Plant Phthalate and its Hydrogenated Derivative from Bioâ€Based Platform Chemicals. ChemSusChem, 2018, 11, 1621-1627.	3.6	19
128	Oxidation of benzene to phenol by dioxygen over vanadium oxide nano-plate. Kinetics and Catalysis, 2010, 51, 394-397.	0.3	18
129	Cobalt ammonia complex mediated preparation of hollow silica nanospheres with multi-nanochambers. Journal of Materials Chemistry, 2012, 22, 11904.	6.7	18
130	Vanadia supported on H2O2-detemplated mesoporous SBA-15 as new effective catalysts for the oxidative dehydrogenation of propane. Microporous and Mesoporous Materials, 2009, 118, 354-360.	2.2	17
131	Catalytic Oxidation of Alcohol to Carboxylic Acid with a Hydrophobic Cobalt Catalyst in Hydrocarbon Solvent. Chemistry - an Asian Journal, 2017, 12, 2404-2409.	1.7	17
132	A strategy of ketalization for the catalytic selective dehydration of biomass-based polyols over H-beta zeolite. Green Chemistry, 2018, 20, 634-640.	4.6	17
133	Preparation of VO2(B) Nanoflake with Glycerol as Reductant Agent and its Catalytic Application in the Aerobic Oxidation of Benzene to Phenol. Topics in Catalysis, 2011, 54, 1016-1023.	1.3	16
134	Highly planar thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for organic field-effect transistors. RSC Advances, 2016, 6, 35394-35401.	1.7	16
135	Magnetism of N-doped graphene nanoribbons with zigzag edges from bottom-up fabrication. RSC Advances, 2016, 6, 10017-10023.	1.7	16
136	Understanding and Measurement for the Binding Energy of Hydrogen bonds of Biomass-Derived Hydroxyl Compounds. Journal of Physical Chemistry A, 2018, 122, 843-848.	1.1	16
137	Ultrahighâ€Content Nitrogenâ€doped Carbon Encapsulating Cobalt NPs as Catalyst for Oxidative Esterification of Furfural. Chemistry - an Asian Journal, 2019, 14, 1515-1522.	1.7	16
138	A Pickering emulsion of a bifunctional interface prepared from Pd nanoparticles supported on silicane-modified graphene oxide: an efficient catalyst for water-mediated catalytic hydrogenation. Catalysis Science and Technology, 2020, 10, 1096-1105.	2.1	16
139	Metal-free synthesis of dimethyl carbonate <i>via</i> transesterification of ethylene carbonate catalyzed by graphitic carbon nitride materials. New Journal of Chemistry, 2020, 44, 3215-3223.	1.4	16
140	Alkali α-MnO ₂ /Na _x MnO ₂ collaboratively catalyzed ammoxidation–Pinner tandem reaction of aldehydes. Catalysis Science and Technology, 2016, 6, 7429-7436.	2.1	15
141	Synthesis of Mesoporous CeMnO Materials and Catalytic Application for Selective Oxidation of Benzyl Alcohol by Molecular Oxygen. Catalysis Letters, 2017, 147, 328-334.	1.4	15
142	Palladium nanoparticles supported on exfoliated g-C ₃ N ₄ as efficient catalysts for selective oxidation of benzyl alcohol by molecular oxygen. New Journal of Chemistry, 2021, 45, 13519-13528.	1.4	15
143	Self-regulated catalysis for the selective synthesis of primary amines from carbonyl compounds. Green Chemistry, 2021, 23, 7115-7121.	4.6	15
144	Catalytic Amidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxamide over Alkali Manganese Oxides. Chinese Journal of Chemistry, 2017, 35, 984-990.	2.6	14

#	Article	IF	CITATIONS
145	Atmospheric Selective Oxidation of Benzyl Alcohol Catalyzed by Pd Nanoparticles Supported on CeO ₂ with Various Morphologies. ChemistrySelect, 2019, 4, 5470-5475.	0.7	14
146	Metal-free catalytic conversion of CO2 into cyclic carbonate by hydroxyl-functionalized graphitic carbon nitride materials. Molecular Catalysis, 2020, 491, 110979.	1.0	14
147	Preparing acid-resistant Ru-based catalysts by carbothermal reduction for hydrogenation of itaconic acid. RSC Advances, 2015, 5, 97256-97263.	1.7	13
148	Preparation of MgO/MCM-22 catalysts by a novel two-step impregnation and their shape-selective performance in the synthesis of p-xylene. Catalysis Communications, 2014, 45, 49-53.	1.6	12
149	Synthesis of nitrogen-containing ordered mesoporous carbon material as an efficient metal-free catalyst for transesterification of β-keto esters. Microporous and Mesoporous Materials, 2017, 241, 72-78.	2.2	12
150	Knoevenagel condensation reactions catalyzed by nitrogen-containing mesoporous carbon materials under mild reaction conditions. Research on Chemical Intermediates, 2018, 44, 7641-7655.	1.3	12
151	Control in Local Coordination Environment Boosting Activating Molecular Oxygen with an Atomically Dispersed Binary Mn–Co Catalyst. ACS Applied Materials & Interfaces, 2022, 14, 18539-18549.	4.0	12
152	Acid–base properties of TiO2-modified MCM-41 mesoporous silica and its catalytic performance for ortho-selective ethylation of phenol with diethyl carbonate. Journal of Molecular Catalysis A, 2012, 357, 50-58.	4.8	11
153	Organic linker geometry controlled synthesis of coordination polymer spheres and their thermal transformation to yolk–shell metal oxides. Journal of Materials Chemistry A, 2014, 2, 15480-15487.	5.2	11
154	Wettability Control of Co–SiO ₂ @Ti–Si Core–Shell Catalyst to Enhance the Oxidation Activity with the In Situ Generated Hydroperoxide. ACS Applied Materials & Interfaces, 2019, 11, 14702-14712.	4.0	11
155	Potassium-doped carbon nitride supported on SBA-15 for enhanced catalytic Knoevenagel condensation under mild conditions. Applied Catalysis A: General, 2022, 641, 118677.	2.2	11
156	Efficient aerobic oxidation of hydrocarbons with O ₂ catalyzed by DDQ/NHPI. Journal of Chemical Technology and Biotechnology, 2010, 85, 564-568.	1.6	10
157	Steric effects of substituents of quinones on the oxygenation of ethylbenzene catalyzed by NHPI/quinone and the catalytic oxidation of ascorbate. Journal of Physical Organic Chemistry, 2011, 24, 693-697.	0.9	10
158	A novel method to prepare shape-selective catalysts by complexation–impregnation. Catalysis Communications, 2012, 29, 153-157.	1.6	10
159	Sulfonic Acid Resin–Catalyzed Oxidation of Aldehydes to Carboxylic Acids by Hydrogen Peroxide. Synthetic Communications, 2013, 43, 979-985.	1.1	10
160	Selective oxidation of cellulose catalyzed by NHPI/Co(OAc)2 using air as oxidant. Cellulose, 2014, 21, 4059-4065.	2.4	10
161	Highly selective synthesis of para-diethylbenzene by alkylation of ethylbenzene with diethyl carbonate over boron oxide modified HZSM-5. Journal of Molecular Catalysis A, 2014, 395, 384-391.	4.8	10
162	Nitrogen-containing ordered mesoporous carbon grafted by alkyl bromide: Simple synthesis and its catalytic application in solvent-free cycloaddition of CO 2. Microporous and Mesoporous Materials, 2018, 258, 244-250.	2.2	10

#	Article	IF	CITATIONS
163	Highly efficient and organic nitrogenâ€containing cationâ€promoted aerobic oxidation of alkylaromatics in the presence of Nâ€hydroxyphthalimide. Journal of Chemical Technology and Biotechnology, 2009, 84, 1762-1766.	1.6	9
164	Catalytic etherification of hydroxyl compounds to methyl ethers with 1,2-dimethoxyethane. RSC Advances, 2015, 5, 24139-24143.	1.7	9
165	Catalytic oxidative C–C bond cleavage route of levulinic acid and methyl levulinate. RSC Advances, 2016, 6, 72744-72749.	1.7	9
166	Direct Catalytic Hydroxylation of Benzene to Phenol Catalyzed by FeCl3 Supported on Exfoliated Graphitic Carbon Nitride. Catalysis Letters, 2020, 150, 301-311.	1.4	9
167	The Catalytic Use of Supported Gold Nanoparticles for Styrene Synthesis Via Oxidative Dehydrogenation of Ethylbenzene. Catalysis Letters, 2011, 141, 198-206.	1.4	8
168	Mesocellular silica foam supported Ni2P catalysts with high hydrogenation activity. Reaction Kinetics, Mechanisms and Catalysis, 2013, 109, 105-115.	0.8	8
169	Selective synthesis of dimethoxyethane via directly catalytic etherification of crude ethylene glycol. Green Chemistry, 2017, 19, 3327-3333.	4.6	8
170	In Situ Fabrication of Inorganic/Organic Hybrid Based on Cu/Coâ€ZIF and Cu ₂ O. Chemistry - an Asian Journal, 2017, 12, 2790-2793.	1.7	8
171	An amphiphilic graphene oxide-based triphase catalyst for highly efficient synthesis of benzyl esters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 534-541.	2.3	8
172	Catalytic Synthesis of 2,5â€Furandicarboxylic Acid from Concentrated 2,5â€Diformylfuran Mediated by <i>N</i> â€hydroxyimides under Mild Conditions. Chemistry - an Asian Journal, 2019, 14, 3329-3334.	1.7	8
173	Molybdenum atalyzed Deoxygenation Coupling of Ligninâ€Derived Alcohols for Functionalized Bibenzyl Chemicals. Chemistry - A European Journal, 2021, 27, 1292-1296.	1.7	8
174	Aprotic Amineâ€modified Manganese Dioxide Catalysts for Selectivityâ€ŧunable Oxidation of Amines. Chemistry - an Asian Journal, 2021, 16, 1388-1391.	1.7	8
175	The solvent-free and aerobic oxidation of benzyl alcohol catalyzed by Pd supported on carbon nitride/CeO ₂ composites. New Journal of Chemistry, 2022, 46, 7108-7117.	1.4	8
176	ZrO2 Supported on Graphitic Carbon Nitride Based on Metal–Nitrogen Interaction for Enhanced Catalytic Cycloaddition of CO2 to Cyclic Carbonates. Catalysis Letters, 2023, 153, 1483-1494.	1.4	8
177	Chemical reactivity and thermal stability of nanometric alkali metal hydrides. Journal of Nanoparticle Research, 2006, 8, 935-942.	0.8	7
178	Imine-linked conjugated organic polymer bearing bis(imino)pyridine ligands and its catalytic application in C–C coupling reactions. Chinese Journal of Catalysis, 2014, 35, 540-545.	6.9	7
179	Studies on the roles of vanadyl sulfate and sodium nitrite in catalytic oxidation of benzyl alcohol with molecular oxygen. Science China Chemistry, 2015, 58, 114-122.	4.2	7
180	Chitosan grafted with a heteropolyanion-based ionic liquid as an effective and reusable catalyst for acetalization. RSC Advances, 2016, 6, 41404-41409.	1.7	7

#	Article	IF	CITATIONS
181	Covalent Triazine Frameworks as Metal Free Catalysts for the Oxidative Coupling of Amines to Imines. ChemistrySelect, 2019, 4, 5073-5080.	0.7	7
182	Catalytic Conversion of Sugar-Derived Polyhydroxy Acid to Trimellitate. Industrial & Engineering Chemistry Research, 2021, 60, 4510-4515.	1.8	7
183	Selective Oxidation of Benzyl Alcohol with Oxygen Catalyzed by Vanadia Supported on Nitrogen-Containing Ordered Mesoporous Carbon Materials. Catalysis Letters, 2022, 152, 962-971.	1.4	7
184	Solvent-free aerobic selective oxidation of benzyl alcohol catalyzed by palladium nanoparticles supported on nitrogen-containing ordered mesoporous carbon. Molecular Catalysis, 2021, 511, 111749.	1.0	7
185	Role of complex equilibrium in the shape-selective performances of MgO/MCM-22 catalysts prepared by complexing impregnation. Catalysis Communications, 2014, 56, 174-178.	1.6	6
186	Magnetic Properties of a Bottomâ€Up Synthesis Analogous Graphene with Nâ€Doped Zigzag Edges. Advanced Electronic Materials, 2015, 1, 1500084.	2.6	6
187	Immobilization of phosphotungstic acid on amine-grafted graphene oxide via a facile and efficient solid-phase reaction for the selective oxidation of cyclohexanol. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 183-197.	0.8	6
188	Organic Acid Anions Modified α-Co(OH) ₂ with Enhanced Activity for the Decomposition of Cyclohexyl Hydroperoxide. ACS Applied Nano Materials, 2019, 2, 2176-2183.	2.4	6
189	Accelerating Selective Oxidation of Biomass-Based Hydroxyl Compounds with Hydrogen Bond Acceptors. Journal of Physical Chemistry Letters, 2021, 12, 7041-7045.	2.1	5
190	A novel method to prepare KNO3/NaY solid base catalysts and their application in the O-ethylation of phenol with diethyl carbonate. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 435-447.	0.8	4
191	THE REACTION OF α,α,α-TRIFLUOROMETHOXYBENZENE WITH AlCl3: A HIGH YIELD PREPARATION OF α,α,α-TRICHLOROMETHOXYBENZENE. Synthetic Communications, 2002, 32, 799-801.	1.1	3
192	Phenyl modification of Mn ontaining mesoporous silica and catalytic oxidation of toluene. Journal of Chemical Technology and Biotechnology, 2010, 85, 283-287.	1.6	3
193	Formation of uniform hollow nanocages with heteroatom-doped MCM-41 structures. RSC Advances, 2015, 5, 5068-5071.	1.7	3
194	Selfâ€Assembled Nickel Nanoparticles Supported on Mesoporous Aluminum Oxide for Selective Hydrogenation of Isophorone. Asian Journal of Organic Chemistry, 2018, 7, 757-762.	1.3	3
195	Hydrogenâ€Bindingâ€Initiated Activation of Oâ^'H Bonds on a Nitrogenâ€Doped Surface for the Catalytic Oxidation of Biomass Hydroxyl Compounds. Angewandte Chemie, 2021, 133, 18251-18258.	1.6	3
196	2D Organic Radical Conjugated Skeletons with Paramagnetic Behaviors. Advanced Materials Interfaces, 2021, 8, 2100943.	1.9	3
197	Metal-free Knoevenagel condensation catalyzed by mesoporous and nitrogen-distribution-tunable supported carbon nitride. Research on Chemical Intermediates, 0, , 1.	1.3	3
198	Synthesis of nitrogen-containing ordered mesoporous carbon materials with tunable nitrogen distributions and their application for metal-free catalytic synthesis of dimethyl carbonates. Molecular Catalysis, 2020, 485, 110848.	1.0	2

#	Article	IF	CITATIONS
199	Preparation of Lanthanide Hydrides of Nanometric Size by the Catalytic Method. Chinese Journal of Chemistry, 2002, 20, 1450-1452.	2.6	1
200	Graphene: Controlled Growth of Single-Crystal Twelve-Pointed Graphene Grains on a Liquid Cu Surface (Adv. Mater. 37/2014). Advanced Materials, 2014, 26, 6519-6519.	11.1	1
201	Sustainedâ€release ibuprofen prodrug particle: Emulsifier and initiator regulate the diameter and distribution. Journal of Applied Polymer Science, 2021, 138, 49779.	1.3	1
202	Graphene: Layer tacking Growth and Electrical Transport of Hierarchical Graphene Architectures (Adv. Mater. 20/2014). Advanced Materials, 2014, 26, 3355-3355.	11.1	0