Sonia Rocha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3551114/publications.pdf

Version: 2024-02-01

76196 53109 11,416 87 40 85 citations h-index g-index papers 100 100 100 22650 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Systems approaches to understand oxygen sensing: how multi-omics has driven advances in understanding oxygen-based signalling. Biochemical Journal, 2022, 479, 245-257.	1.7	5
2	Regulation of chromatin accessibility by hypoxia and HIF. Biochemical Journal, 2022, 479, 767-786.	1.7	19
3	Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers, 2021, 13, 350.	1.7	22
4	Transcription Regulation of Gene Transcription by Hypoxia-Inducible Factor 1α., 2021,, 480-489.		1
5	Abstract IA-017: Chromatin and gene transcription in hypoxia. , 2021, , .		o
6	Role of Hypoxia in the Control of the Cell Cycle. International Journal of Molecular Sciences, 2021, 22, 4874.	1.8	26
7	PBRM1 Cooperates with YTHDF2 to Control HIF-1α Protein Translation. Cells, 2021, 10, 1425.	1.8	13
8	Oxygen-dependent changes in binding partners and post-translational modifications regulate the abundance and activity of HIF- $1\hat{l}_{\pm}/2\hat{l}_{\pm}$. Science Signaling, 2021, 14, .	1.6	26
9	Von Hippel–Lindau (VHL) small-molecule inhibitor binding increases stability and intracellular levels of VHL protein. Journal of Biological Chemistry, 2021, 297, 100910.	1.6	13
10	Use of to Study the Crosstalk Between HIF and NF-κB Signaling in and. Methods in Molecular Biology, 2021, 2366, 255-265.	0.4	1
11	HIF-1Î ² Positively Regulates NF-Î ² B Activity via Direct Control of TRAF6. International Journal of Molecular Sciences, 2020, 21, 3000.	1.8	12
12	Gene transcription and chromatin regulation in hypoxia. Biochemical Society Transactions, 2020, 48, 1121-1128.	1.6	22
13	Oxygenâ€sensing mechanisms in cells. FEBS Journal, 2020, 287, 3888-3906.	2.2	50
14	JmjC histone demethylases act as chromatin oxygen sensors. Molecular and Cellular Oncology, 2019, 6, 1608501.	0.3	14
15	Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science, 2019, 363, 1222-1226.	6.0	266
16	RNA-seq analysis of PHD and VHL inhibitors reveals differences and similarities to the hypoxia response Wellcome Open Research, 2019, 4, 17.	0.9	14
17	Group-Based Optimization of Potent and Cell-Active Inhibitors of the von Hippel–Lindau (VHL) E3 Ubiquitin Ligase: Structure–Activity Relationships Leading to the Chemical Probe (2 <i>S</i> ,4 <i>R</i>)-1-((<i>S</i>)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy- <i>N (VH298), Journal of Medicinal Chemistry, 2018, 61, 599-618.</i>	>2:94-(4-	methylthiazol
18	SINHCAF/FAM60A and SIN3A specifically repress HIF-2α expression. Biochemical Journal, 2018, 475, 2073-2090.	1.7	11

#	Article	IF	Citations
19	Hypoxia and Chromatin: A Focus on Transcriptional Repression Mechanisms. Biomedicines, 2018, 6, 47.	1.4	35
20	TNFSF14/LIGHT, a Non-Canonical NF-κB Stimulus, Induces the HIF Pathway. Cells, 2018, 7, 102.	1.8	14
21	Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nature Communications, 2017, 8, 830.	5.8	184
22	Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB. Biomedicines, 2017, 5, 21.	1.4	133
23	KDM2 Family Members are Regulated by HIF-1 in Hypoxia. Cells, 2017, 6, 8.	1.8	34
24	CDK dependent phosphorylation of PHD1 on Serine 130 determines specificity in substrate targeting in cells. Journal of Cell Science, 2016, 129, 191-205.	1.2	15
25	Hypoxia Induced NF-κB. Cells, 2016, 5, 10.	1.8	115
26	Intricate Macrophage-Colorectal Cancer Cell Communication in Response to Radiation. PLoS ONE, 2016, 11, e0160891.	1.1	18
27	lonizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Scientific Reports, 2016, 6, 18765.	1.6	139
28	Potent and selective chemical probe of hypoxic signalling downstream of HIF- \hat{l}_{\pm} hydroxylation via VHL inhibition. Nature Communications, 2016, 7, 13312.	5.8	167
29	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
30	<scp>NF</scp> â€PB and <scp>HIF</scp> crosstalk in immune responses. FEBS Journal, 2016, 283, 413-424.	2.2	255
31	The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors. PLoS Genetics, 2016, 12, e1005940.	1.5	96
32	Enhanced snoMEN Vectors Facilitate Establishment of GFP–HIF-1α Protein Replacement Human Cell Lines. PLoS ONE, 2016, 11, e0154759.	1.1	2
33	HIF- $1\hat{1}$ ± restricts NF- $\hat{1}$ B dependent gene expression to control innate immunity signals. DMM Disease Models and Mechanisms, 2015, 8, 169-81.	1.2	82
34	The role of hypoxia in inflammatory disease (Review). International Journal of Molecular Medicine, 2015, 35, 859-869.	1.8	145
35	Cezanne regulates E2F1-dependent HIF2α expression. Journal of Cell Science, 2015, 128, 3082-93.	1.2	54
36	Dose-Dependent Effects of Allopurinol on Human Foreskin Fibroblast Cells and Human Umbilical Vein Endothelial Cells under Hypoxia. PLoS ONE, 2015, 10, e0123649.	1.1	7

#	Article	IF	Citations
37	PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia. Cell Cycle, 2014, 13, 3878-3891.	1.3	17
38	Hypoxia activates IKK–NF-κB and the immune response in Drosophila melanogaster. Bioscience Reports, 2014, 34, .	1.1	31
39	Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochemical Journal, 2014, 462, 385-395.	1.7	85
40	siRNA Screening to Identify Ubiquitin and Ubiquitin-like System Regulators of Biological Pathways in Cultured Mammalian Cells. Journal of Visualized Experiments, 2014, , .	0.2	2
41	Cell cycle progression in response to oxygen levels. Cellular and Molecular Life Sciences, 2014, 71, 3569-3582.	2.4	91
42	Cezanne (<scp>OTUD</scp> 7B) regulates <scp>HIF</scp> â€1α homeostasis in a proteasomeâ€independent manner. EMBO Reports, 2014, 15, 1268-1277.	2.0	78
43	Analysis of Global RNA Synthesis at the Single Cell Level following Hypoxia. Journal of Visualized Experiments, 2014, , .	0.2	2
44	Growâ,; the HIF system, energy homeostasis and the cell cycle. Histology and Histopathology, 2014, 29, 589-600.	0.5	22
45	TfR1 interacts with the IKK complex and is involved in IKK–NF-κB signalling. Biochemical Journal, 2013, 449, 275-284.	1.7	39
46	Identification and Functional Characterization of FMN2, a Regulator of the Cyclin-Dependent Kinase Inhibitor p21. Molecular Cell, 2013, 49, 922-933.	4.5	39
47	PHD1 Links Cell-Cycle Progression to Oxygen Sensing through Hydroxylation of the Centrosomal Protein Cep192. Developmental Cell, 2013, 26, 381-392.	3.1	74
48	The P-body component USP52/PAN2 is a novel regulator of <i>HIF1A</i> mRNA stability. Biochemical Journal, 2013, 451, 185-194.	1.7	51
49	FMN2 is a novel regulator of the cyclin-dependent kinase inhibitor p21. Cell Cycle, 2013, 12, 2348-2354.	1.3	11
50	HIF-independent role of prolyl hydroxylases in the cellular response to amino acids. Oncogene, 2013, 32, 4549-4556.	2.6	106
51	A tale of two transcription factors: NF-kB and HIF crosstalk. OA Molecular and Cell Biology, 2013, 1, .	0.1	18
52	IKK and NF-κB-mediated regulation of Claspin impacts on ATR checkpoint function. EMBO Journal, 2012, 31, 2660-2661.	3.5	0
53	Family with Sequence Similarity 60A (FAM60A) Protein Is a Cell Cycle-fluctuating Regulator of the SIN3-HDAC1 Histone Deacetylase Complex. Journal of Biological Chemistry, 2012, 287, 32346-32353.	1.6	45
54	Proteomic screen reveals Fbw7 as a modulator of the NF- $\hat{l}^{\circ}B$ pathway. Nature Communications, 2012, 3, 976.	5.8	82

#	Article	IF	CITATIONS
55	Chromatin as an oxygen sensor and active player in the hypoxia response. Cellular Signalling, 2012, 24, 35-43.	1.7	109
56	NF- $\hat{\mathbb{I}}^{\mathrm{p}}$ B controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nature Cell Biology, 2011, 13, 1272-1279.	4.6	306
57	The role of RelA (p65) threonine 505 phosphorylation in the regulation of cell growth, survival, and migration. Molecular Biology of the Cell, 2011, 22, 3032-3040.	0.9	38
58	Ndc80 complex: New evidence for the existence of spindle assembly checkpoint in mammalian oocyte meiosis. Cell Cycle, 2011, 10, 879-878.	1.3	30
59	Antagonistic crosstalk between APC and HIF-1α. Cell Cycle, 2011, 10, 1545-1547.	1.3	16
60	Mechanism of hypoxia-induced NFκB. Cell Cycle, 2011, 10, 879-882.	1.3	37
61	HIF- $1\hat{l}\pm$ depletion results in SP1-mediated cell cycle disruption and alters the cellular response to chemotherapeutic drugs. Cell Cycle, 2011, 10, 1249-1260.	1.3	34
62	The chromatin remodeler ISWI regulates the cellular response to hypoxia: role of FIH. Molecular Biology of the Cell, 2011, 22, 4171-4181.	0.9	33
63	Evolutionary Conserved Regulation of HIF-1β by NF-κB. PLoS Genetics, 2011, 7, e1001285.	1.5	122
64	IKK and NF-κB-mediated regulation of Claspin impacts on ATR checkpoint function. EMBO Journal, 2010, 29, 2966-2978.	3.5	31
65	Adenomatous Polyposis Coli and Hypoxia-inducible Factor- $1\hat{l}\pm$ Have an Antagonistic Connection. Molecular Biology of the Cell, 2010, 21, 3630-3638.	0.9	47
66	Mechanism of Hypoxia-Induced NF-κB. Molecular and Cellular Biology, 2010, 30, 4901-4921.	1.1	195
67	SWI/SNF Regulates the Cellular Response to Hypoxia. Journal of Biological Chemistry, 2009, 284, 4123-4131.	1.6	99
68	Regulation of gene expression by hypoxia. Biochemical Journal, 2008, 414, 19-29.	1.7	234
69	Regulation of hypoxia-inducible factor-1α by NF-κB. Biochemical Journal, 2008, 412, 477-484.	1.7	594
70	Regulation of ATR-dependent pathways by the FHA domain containing protein SNIP1. Oncogene, 2007, 26, 4523-4530.	2.6	18
71	Gene regulation under low oxygen: holding your breath for transcription. Trends in Biochemical Sciences, 2007, 32, 389-397.	3.7	188
72	SNIP1 Is a Candidate Modifier of the Transcriptional Activity of c-Myc on E Box-Dependent Target Genes. Molecular Cell, 2006, 24, 771-783.	4.5	60

#	Article	IF	CITATIONS
73	Regulation of p53 tumour suppressor target gene expression by the p52 NF-κB subunit. EMBO Journal, 2006, 25, 4820-4832.	3.5	121
74	Cisplatin Mimics ARF Tumor Suppressor Regulation of RelA (p65) Nuclear Factor-l®B Transactivation. Cancer Research, 2006, 66, 929-935.	0.4	80
75	Regulation of NF-κB and p53 through activation of ATR and Chk1 by the ARF tumour suppressor. EMBO Journal, 2005, 24, 1157-1169.	3.5	151
76	ARF the Integrator: Linking NF-?B, p53 and Checkpoint Kinases. Cell Cycle, 2005, 4, 756-759.	1.3	31
77	Active Repression of Antiapoptotic Gene Expression by RelA(p65) NF-κB. Molecular Cell, 2004, 13, 853-865.	4.5	371
78	The p53-inhibitor pifithrin-alpha inhibits firefly luciferase activity in vivo and in vitro. BMC Molecular Biology, 2003, 4, 9.	3.0	51
79	Recombinant mistletoe lectin induces p53-independent apoptosis in tumour cells and cooperates with ionising radiation. British Journal of Cancer, 2003, 88, 1785-1792.	2.9	53
80	p53- and Mdm2-Independent Repression of NF-κB Transactivation by the ARF Tumor Suppressor. Molecular Cell, 2003, 12, 15-25.	4.5	194
81	p53 Represses Cyclin D1 Transcription through Down Regulation of Bcl-3 and Inducing Increased Association of the p52 NF-κB Subunit with Histone Deacetylase 1. Molecular and Cellular Biology, 2003, 23, 4713-4727.	1.1	220
82	NF-κB Function in Inflammation, Cellular Stress and Disease. Cell and Molecular Response To Stress, 2002, 3, 61-73.	0.4	1
83	Key targets for the execution of radiation-induced tumor cell apoptosis: the role of p53 and caspases. International Journal of Radiation Oncology Biology Physics, 2001, 49, 561-567.	0.4	40
84	Overexpression of Bcl-2 enhances sensitivity of L929 cells to a lipophilic cationic photosensitiser. Cell Death and Differentiation, 2001, 8, 204-206.	5.0	6
85	Differential p53-dependent mechanism of radiosensitization in vitro and in vivo by the protein kinase C-specific inhibitor PKC412. Cancer Research, 2001, 61, 732-8.	0.4	34
86	Protein kinase C inhibitor and irradiation-induced apoptosis: relevance of the cytochrome c-mediated caspase-9 death pathway. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 2000, 11, 491-9.	0.8	5
87	Ceramide Induces Cytochrome c Release from Isolated Mitochondria. Journal of Biological Chemistry, 1999, 274, 6080-6084.	1.6	240