Murat Barisik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3550980/publications.pdf Version: 2024-02-01

MIIDAT RADISIK

#	Article	IF	CITATIONS
1	Size Dependent Surface Charge Properties of Silica Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 1836-1842.	3.1	216
2	Temperature dependence of thermal resistance at the water/silicon interface. International Journal of Thermal Sciences, 2014, 77, 47-54.	4.9	89
3	Equilibrium molecular dynamics studies on nanoscale-confined fluids. Microfluidics and Nanofluidics, 2011, 11, 269-282.	2.2	77
4	Wetting characterisation of silicon (1,0,0) surface. Molecular Simulation, 2013, 39, 700-709.	2.0	75
5	Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces. Journal of Chemical Physics, 2013, 139, 244702.	3.0	73
6	Near-surface viscosity effects on capillary rise of water in nanotubes. Physical Review E, 2015, 92, 053009.	2.1	62
7	Molecular dynamics simulations of shear-driven gas flows in nano-channels. Microfluidics and Nanofluidics, 2011, 11, 611-622.	2.2	54
8	Boundary treatment effects on molecular dynamics simulations of interface thermal resistance. Journal of Computational Physics, 2012, 231, 7881-7892.	3.8	54
9	Scale effects in gas nano flows. Physics of Fluids, 2014, 26, .	4.0	48
10	Molecular dynamics simulations of Kapitza length for argon-silicon and water-silicon interfaces. International Journal of Precision Engineering and Manufacturing, 2014, 15, 323-329.	2.2	45
11	Interfacial thermal resistance between the graphene-coated copper and liquid water. International Journal of Heat and Mass Transfer, 2016, 97, 422-431.	4.8	44
12	Surface–gas interaction effects on nanoscale gas flows. Microfluidics and Nanofluidics, 2012, 13, 789-798.	2.2	43
13	Molecular dynamics modeling of thermal resistance at argon-graphite and argon-silver interfaces. International Journal of Thermal Sciences, 2012, 59, 29-37.	4.9	43
14	Roughness Effects on the Surface Charge Properties of Silica Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 7274-7286.	3.1	38
15	Electric field controlled transport of water in graphene nano-channels. Journal of Chemical Physics, 2017, 147, 164311.	3.0	36
16	Surface Charge of a Nanoparticle Interacting with a Flat Substrate. Journal of Physical Chemistry C, 2014, 118, 10927-10935.	3.1	35
17	Surface charge-dependent transport of water in graphene nano-channels. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	35
18	Wetting of chemically heterogeneous striped surfaces: Molecular dynamics simulations. AIP Advances, 2018, 8, .	1.3	33

Murat Barisik

#	Article	IF	CITATIONS
19	Molecular free paths in nanoscale gas flows. Microfluidics and Nanofluidics, 2015, 18, 1365-1371.	2.2	30
20	Smart Wall Model for Molecular Dynamics Simulations of Nanoscale Gas Flows. Communications in Computational Physics, 2010, 7, 977-993.	1.7	29
21	Analytical solution of thermally developing microtube heat transfer including axial conduction, viscous dissipation, and rarefaction effects. International Communications in Heat and Mass Transfer, 2015, 67, 81-88.	5.6	25
22	"Law of the nano-wall―in nano-channel gas flows. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	21
23	Electric charge of nanopatterned silica surfaces. Physical Chemistry Chemical Physics, 2019, 21, 7576-7587.	2.8	20
24	Internal surface electric charge characterization of mesoporous silica. Scientific Reports, 2019, 9, 137.	3.3	19
25	Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection. Journal of Chemical Physics, 2016, 144, 194707.	3.0	18
26	Effect of nano-film thickness on thermal resistance at water/silicon interface. International Journal of Heat and Mass Transfer, 2019, 134, 634-640.	4.8	18
27	Pore Size and Porosity Dependent Zeta Potentials of Mesoporous Silica Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 19579-19587.	3.1	17
28	An extended Kozeny-Carman-Klinkenberg model for gas permeability in micro/nano-porous media. Physics of Fluids, 2019, 31, .	4.0	15
29	Size dependent surface charge properties of silica nano-channels: double layer overlap and inlet/outlet effects. Physical Chemistry Chemical Physics, 2018, 20, 16719-16728.	2.8	14
30	The extended Graetz problem for micro-slit geometries; analytical coupling of rarefaction, axial conduction and viscous dissipation. International Journal of Thermal Sciences, 2016, 110, 261-269.	4.9	11
31	Wetting of single crystalline and amorphous silicon surfaces: effective range of intermolecular forces for wetting. Molecular Simulation, 2020, 46, 224-234.	2.0	11
32	Size dependent influence of contact line pinning on wetting of nano-textured/patterned silica surfaces. Nanoscale, 2020, 12, 21376-21391.	5.6	11
33	Numerical determination of interfacial heat transfer coefficient for an aligned dual scale porous medium. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2716-2733.	2.8	10
34	Slip Effects on Ionic Current of Viscoelectric Electroviscous Flows through Different Length Nanofluidic Channels. Langmuir, 2020, 36, 9191-9203.	3.5	10
35	Pore connectivity effects on the internal surface electric charge of mesoporous silica. Colloid and Polymer Science, 2019, 297, 1365-1373.	2.1	9
36	Electric Field Controlled Heat Transfer Through Silicon and Nano-confined Water. Nanoscale and Microscale Thermophysical Engineering, 2019, 23, 304-316.	2.6	9

MURAT BARISIK

#	Article	IF	CITATIONS
37	Thermal and hydrodynamic behavior of forced convection gaseous slip flow in a Kelvin cell metal foam. International Communications in Heat and Mass Transfer, 2022, 131, 105838.	5.6	8
38	Parametrizing nonbonded interactions between silica and water from first principles. Applied Surface Science, 2020, 504, 144359.	6.1	7
39	MD Simulations of Nano-Scale Gas Flows: A Case Study of Couette Flow at Kn = 10. AlP Conference Proceedings, 2011, , .	0.4	4
40	Local Heat Transfer Control using Liquid Dielectrophoresis at Graphene/Water Interfaces. International Journal of Heat and Mass Transfer, 2021, 166, 120801.	4.8	3
41	Active heat transfer enhancement by interface-localized liquid dielectrophoresis using interdigitated electrodes. Carbon, 2022, 189, 339-348.	10.3	3
42	Analytical solution of micro-/nanoscale convective liquid flows in tubes and slits. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	2
43	Size and roughness dependent temperature effects on surface charge of silica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127407.	4.7	1
44	Molecular Dynamics Studies on Nanoscale Gas Transport. , 2015, , 2307-2315.		1
45	Heat Conduction and Interface Thermal Resistance in Liquid Argon Filled Silver and Graphite Nanochannels. , 2012, , .		0
46	Molecular Dynamics Studies on Nanoscale Gas Transport. , 2014, , 1-9.		0
47	Interface Resistance and Thermal Transport in Nano-Confined Liquids. , 2016, , 1-25.		0
48	silika yüzeylerin ıslanma hareketlerinin moleküler dinamik ile modellenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 2018, 33, .	0.8	0