List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3550975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2021 international consensus statement on optical coherence tomography for basal cell carcinoma: image characteristics, terminology and educational needs. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 772-778.	1.3	15
2	<i>In Vivo</i> reflectance confocal microscopy of cutaneous acute graftâ€versusâ€host disease: concordance with histopathology and interobserver reproducibility of a glossary with representative images. Journal of the European Academy of Dermatology and Venereology, 2022, , .	1.3	1
3	Cold atmospheric plasma reduces demodex count on the face comparably to topical ivermectin, as measured by reflectance confocal microscopy. Experimental Dermatology, 2022, 31, 1352-1354.	1.4	2
4	Segmentation of cellular patterns in confocal images of melanocytic lesions in vivo via a multiscale encoder-decoder network (MED-Net). Medical Image Analysis, 2021, 67, 101841.	7.0	20
5	Angulated small nests and cords: Key diagnostic histopathologic features of infiltrative basal cell carcinoma can be identified using integrated reflectance confocal microscopyâ€optical coherence tomography. Journal of Cutaneous Pathology, 2021, 48, 53-65.	0.7	5
6	Lost in translation: true clinical impact of reflectance confocal microscopy overlooked in â€Biopsy outperforms reflectance confocal microscopy in diagnosing and subtyping basal cell carcinoma: results and experiences from a randomized controlled multicentre trial'. British Journal of Dermatology, 2021, 184, 775-776.	1.4	1
7	Combining Reflective Confocal Microscopy and Dynamic Optical Coherence Tomography to Diagnose Melanoacanthoma: Case Report. American Journal of Dermatopathology, 2021, 43, 736-739.	0.3	2
8	Semantic segmentation of reflectance confocal microscopy mosaics of pigmented lesions using weak labels. Scientific Reports, 2021, 11, 3679.	1.6	12
9	671 Morphological and histological effect of emollient application in actinic keratoses. Journal of Investigative Dermatology, 2021, 141, S117.	0.3	0
10	Abstract 2814: Dynamic imaging of tumor-immune microenvironment (TiME) and microvasculature identifies â€~hot' and â€~cold' tumor phenotypes in vivo in patients. , 2021, , .		0
11	In Vivo Reflectance Confocal Microscopy as a Response Monitoring Tool for Actinic Keratoses Undergoing Cryotherapy and Photodynamic Therapy. Cancers, 2021, 13, 5488.	1.7	6
12	In vivo optical imaging-guided targeted sampling for precise diagnosis and molecular pathology. Scientific Reports, 2021, 11, 23124.	1.6	7
13	InÂvivo identification of amyloid and mucin in basal cell carcinoma with combined reflectance confocal microscopy–optical coherence tomography device and direct histopathologic correlation. Journal of the American Academy of Dermatology, 2020, 83, 619-622.	0.6	7
14	Utilizing Machine Learning for Image QualityÂAssessment for Reflectance ConfocalÂMicroscopy. Journal of Investigative Dermatology, 2020, 140, 1214-1222.	0.3	24
15	The potential utility of integrated reflectance confocal microscopy-optical coherence tomography for guiding triage and therapy of basal cell carcinomas. Journal of Cancer, 2020, 11, 6019-6024.	1.2	9
16	Detection of the DEJ and Segmentation of Its Morphological Patterns in RCM Images of Melanocytic Skin Lesions. , 2020, , .		2
17	Dynamic label-free in vivo imaging of tumor-immune microenvironment (TiME) and microvasculature features in skin cancers with reflectance confocal microscopy (RCM). , 2020, , .		0
18	Absence of lesional features on reflectance confocal microscopy: Quality control steps to avoid false-negative results. Journal of the American Academy of Dermatology, 2019, 81, e71-e73.	0.6	3

#	Article	IF	CITATIONS
19	Features of cutaneous acute graftâ€versusâ€host disease by reflectance confocal microscopy. British Journal of Dermatology, 2019, 181, 829-831.	1.4	6
20	Accuracy of teleâ€consultation on management decisions of lesions suspect for melanoma using reflectance confocal microscopy as a standâ€alone diagnostic tool. Journal of the European Academy of Dermatology and Venereology, 2019, 33, 439-446.	1.3	9
21	Key Histopathology Features of Cutaneous Acute Graft-Versus-Host Disease Can be Detected Noninvasively. Blood, 2019, 134, 3278-3278.	0.6	2
22	Artifacts and landmarks: pearls and pitfalls for in vivo reflectance confocal microscopy of the skin using the tissue-coupled device. Dermatology Online Journal, 2019, 25, .	0.2	8
23	Combined reflectance confocal microscopy-optical coherence tomography for detection and deep margin assessment of basal cell carcinomas: a clinical study (Conference Presentation). , 2019, , .		0
24	Artifacts and landmarks: pearls and pitfalls for in vivo reflectance confocal microscopy of the skin using the tissue-coupled device. Dermatology Online Journal, 2019, 25, .	0.2	2
25	A Multiresolution Convolutional Neural Network with Partial Label Training for Annotating Reflectance Confocal Microscopy Images of Skin. Lecture Notes in Computer Science, 2018, , 292-299.	1.0	10
26	Evaluation of a Combined Reflectance Confocal Microscopy–Optical Coherence Tomography Device for Detection and Depth Assessment of Basal Cell Carcinoma. JAMA Dermatology, 2018, 154, 1175.	2.0	61
27	A Multiresolution Deep Learning Framework for Automated Annotation of Reflectance Confocal Microscopy Images. , 2018, , .		Ο
28	Deep learning based classification of morphological patterns in RCM to guide noninvasive diagnosis of melanocytic lesions (Conference Presentation). , 2017, , .		2
29	Multicentre study on inflammatory skin diseases from The International Confocal Working Group: specific confocal microscopy features and an algorithmic method of diagnosis. British Journal of Dermatology, 2016, 175, 364-374.	1.4	39
30	Enlightening the Pink. Dermatologic Clinics, 2016, 34, 443-458.	1.0	19
31	A machine learning method for identifying morphological patterns in reflectance confocal microscopy mosaics of melanocytic skin lesions in-vivo. , 2016, , .		4
32	Nonâ€invasive <i>in vivo</i> dermatopathology: identification of reflectance confocal microscopic correlates to specific histological features seen in melanocytic neoplasms. Journal of the European Academy of Dermatology and Venereology, 2014, 28, 1069-1078.	1.3	28
33	Reflectance confocal microscopy for diagnosis of mammary and extramammary Paget's disease. Journal of the European Academy of Dermatology and Venereology, 2013, 27, e24-9.	1.3	36
34	ANGIOMA. , 2013, , 264-273.		0
35	In vivo confocal microscopy for detection and grading of dysplastic nevi: A pilot study. Journal of the American Academy of Dermatology, 2012, 66, e109-e121.	0.6	81
36	Visual and confocal microscopic interpretation of patch tests to benzethonium chloride and benzalkonium chloride. Skin Research and Technology, 2012, 18, 272-277.	0.8	14

#	Article	IF	CITATIONS
37	Atypical/Dysplastic Nevi. , 2012, , 87-98.		0
38	Agreement on the Clinical Diagnosis and Management of Cutaneous Squamous Neoplasms. Dermatologic Surgery, 2010, 36, 1514-1520.	0.4	13
39	Comparing In Vivo Reflectance Confocal Microscopy, Dermoscopy, and Histology of Clear-Cell Acanthoma. Dermatologic Surgery, 2009, 35, 952-959.	0.4	19
40	BRAF V599E Mutation is Not Age Dependent: It is Present in Common Melanocytic Nevi in Both Children and Adults. Journal of Cutaneous Pathology, 2008, 32, 82-82.	0.7	0
41	Spitzoid Melanomas in Children, Like Spitz Nevi, Lack Common Activating Mutations in BRAF and NRAS. Journal of Cutaneous Pathology, 2008, 32, 89-89.	0.7	0
42	Reflectance Confocal Microscopy of Molluscum Contagiosum. Archives of Dermatology, 2008, 144, 134.	1.7	23
43	Basic principles of reflectance confocal microscopy. , 2008, , 1-6.		12
44	Normal skin. , 2008, , 19-41.		2
45	Dermoscopic and Reflectance Confocal Microscope Findings of Trichoepithelioma. Dermatology, 2007, 215, 354-358.	0.9	54
46	Correlation of Dermoscopy With In Vivo Reflectance Confocal Microscopy of Streaks in Melanocytic Lesions. Archives of Dermatology, 2007, 143, 727-34.	1.7	27
47	In vivo reflectance confocal microscopy of mycosis fungoides: A preliminary study. Journal of the American Academy of Dermatology, 2007, 57, 435-441.	0.6	58
48	Reflectance confocal microscopy of pigmented basal cell carcinoma. Journal of the American Academy of Dermatology, 2006, 54, 638-643.	0.6	148
49	Sclerosing Polycystic Adenosis of the Salivary Gland. American Journal of Surgical Pathology, 2006, 30, 154-164.	2.1	102
50	Are all melanomas the same?. Cancer, 2006, 106, 907-913.	2.0	47
51	Reflectance Confocal Microscopy for Imaging Pigmented Basal Cell Cancers In-Vivo. , 2006, , .		0
52	Mohs Surgical Extirpation of a Basal Cell Carcinoma in a Patient with Familial Multiple Trichoepitheliomas. Dermatologic Surgery, 2005, 31, 1458-1461.	0.4	0
53	Incidence and Clinical Significance of Lymph Node Metastasis Detected by Cytokeratin Immunohistochemical Staining in Ductal Carcinoma In Situ. Annals of Surgical Oncology, 2005, 12, 254-259.	0.7	29
54	Mohs Surgical Extirpation of a Basal Cell Carcinoma in a Patient with Familial Multiple Trichoepitheliomas. Dermatologic Surgery, 2005, 31, 1458-1461.	0.4	4

#	Article	IF	CITATIONS
55	Mutations in the CYLD gene in Brooke–Spiegler Syndrome, Familial Cylindromatosis, and Multiple Familial Trichoepithelioma: Lack of Genotype–Phenotype Correlation. Journal of Investigative Dermatology, 2005, 124, 919-920.	0.3	123
56	Subcutaneous Myeloid Sarcoma. Archives of Dermatology, 2005, 141, 104-6.	1.7	1
57	B-RAF and melanocytic neoplasia. Journal of the American Academy of Dermatology, 2005, 53, 108-114.	0.6	61
58	Lack of BRAF Mutations in Spitz nevi. Journal of Investigative Dermatology, 2004, 122, 1325-1326.	0.3	60
59	Genetic similarities between Spitz nevus and Spitzoid melanoma in children. Cancer, 2004, 101, 2636-2640.	2.0	85
60	A Novel Missense Mutation in CYLD in a Family with Brooke–Spiegler Syndrome. Journal of Investigative Dermatology, 2003, 121, 732-734.	0.3	67
61	Identification of a recurrent mutation in the CYLD gene in Brooke-Spiegler syndrome. Clinical and Experimental Dermatology, 2003, 28, 539-541.	0.6	31