Navnath S Gavande

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3550900/publications.pdf

Version: 2024-02-01

45 papers

1,147 citations

471509 17 h-index 28 g-index

49 all docs

49 docs citations

49 times ranked 1964 citing authors

#	Article	IF	CITATIONS
1	In Vivo Targeting Replication Protein A for Cancer Therapy. Frontiers in Oncology, 2022, 12, 826655.	2.8	6
2	Nanomedicine for overcoming therapeutic and diagnostic challenges associated with pancreatic cancer. Drug Discovery Today, 2022, , .	6.4	1
3	Recent Advances in the Development of Non-PIKKs Targeting Small Molecule Inhibitors of DNA Double-Strand Break Repair. Frontiers in Oncology, 2022, 12, 850883.	2.8	12
4	Pro-inflammatory cytokines and chemokines initiate multiple prostate cancer biologic pathways of cellular proliferation, heterogeneity and metastasis in a racially diverse population and underlie the genetic/biologic mechanism of racial disparity: Update. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 34-40.	1.6	18
5	Design, synthesis, biological evaluation of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehydes as non-purine xanthine oxidase inhibitors: Tracing the anticancer mechanism via xanthine oxidase inhibition. Bioorganic Chemistry, 2021, 107, 104620.	4.1	18
6	Abstract PO-023: Impact of a novel Ku-DNA binding inhibitor on the IR-induced DNA damage response. , 2021, , .		0
7	Implications of the USP10-HDAC6 axis in lung cancer - A path to precision medicine. , 2021, 2, .		2
8	Structure-Guided Optimization of Replication Protein A (RPA)–DNA Interaction Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 1118-1124.	2.8	16
9	Discovery and development of novel DNA-PK inhibitors by targeting the unique Ku–DNA interaction. Nucleic Acids Research, 2020, 48, 11536-11550.	14.5	19
10	The flavonoid, 2′-methoxy-6-methylflavone, affords neuroprotection following focal cerebral ischaemia. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1266-1282.	4.3	18
11	Abstract 1301: Targeting protein-DNA interactions in the DNA damage response: Lead identification and optimization for novel inhibitors of RPA and Ku., 2019,,.		0
12	Abstract A095: Targeting protein-DNA interactions in the DNA damage response: Lead identification and optimization for novel inhibitors of RPA and Ku. , 2019 , , .		0
13	Abstract 1301: Targeting protein-DNA interactions in the DNA damage response: Lead identification and optimization for novel inhibitors of RPA and Ku., 2019,,.		0
14	Modulating DNA Repair Pathways to Improve Precision Genome Engineering. ACS Chemical Biology, 2018, 13, 389-396.	3.4	99
15	Natural Products as an Emerging Therapeutic Alternative in the Treatment of Neurological Disorders. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-2.	1.2	6
16	Abstract LB-A11: Targeting DNA-PK and the DNA damage response via small molecule Ku inhibitors. , 2018, , .		0
17	Abstract 2829: Targeting the DNA damage response and DNA-PK signaling via small molecule Ku inhibitors. , 2018, , .		2
18	Antidepressant, anticonvulsant and antinociceptive effects of 3′-methoxy-6-methylflavone and 3′-hydroxy-6-methylflavone may involve GABAergic mechanisms. Pharmacological Reports, 2017, 69, 1014-1020.	3.3	11

#	Article	IF	CITATIONS
19	Design and Structure-Guided Development of Novel Inhibitors of the Xeroderma Pigmentosum Group A (XPA) Protein–DNA Interaction. Journal of Medicinal Chemistry, 2017, 60, 8055-8070.	6.4	12
20	Abstract B34: Development of novel small molecule inhibitors targeting DNA repair proteins., 2017,,.		0
21	Abstract LB-119: Targeting DNA-PK via small molecule inhibitors of the Ku-DNA interaction. , 2017, , .		0
22	Abstract 1416: Development of small molecule inhibitors for cancer therapy by targeting RPA and XPA nucleotide excision repair proteins., 2017,,.		0
23	Targeting the nucleotide excision repair pathway for therapeutic applications. , 2016, , 135-150.		4
24	DNA repair targeted therapy: The past or future of cancer treatment?., 2016, 160, 65-83.		307
25	Insights into the Mechanism of Inhibition of CXCR4: Identification of Piperidinylethanamine Analogs as Anti-HIV-1 Inhibitors. Antimicrobial Agents and Chemotherapy, 2015, 59, 1895-1904.	3.2	28
26	Characterization of a Drosophila Ortholog of the Cdc7 Kinase. Journal of Biological Chemistry, 2015, 290, 1332-1347.	3.4	18
27	Abstract C57: Discovery and development of replication protein A (RPA)-DNA interaction inhibitors for cancer chemotherapy., 2015,,.		0
28	Abstract C58: Small molecule inhibitors targeting the interaction of xeroderma pigmentosum group A protein with cisplatin-damaged DNA. , 2015 , , .		0
29	Design, Synthesis, and Pharmacological Evaluation of Fluorescent and Biotinylated Antagonists of Ï ₁ GABA _C Receptors. ACS Medicinal Chemistry Letters, 2013, 4, 402-407.	2.8	22
30	The discovery of novel isoflavone pan peroxisome proliferator-activated receptor agonists. Bioorganic and Medicinal Chemistry, 2013, 21, 766-778.	3.0	24
31	The enantiomers of syn-2,3-difluoro-4-aminobutyric acid elicit opposite responses at the GABA _C receptor. Chemical Communications, 2012, 48, 829-831.	4.1	51
32	Structure-Based Design of Highly Selective β-Secretase Inhibitors: Synthesis, Biological Evaluation, and Protein–Ligand X-ray Crystal Structure. Journal of Medicinal Chemistry, 2012, 55, 9195-9207.	6.4	36
33	Differentiating Enantioselective Actions of GABOB: A Possible Role for Threonine 244 in the Binding Site of GABA _C Ï ₁ Receptors. ACS Chemical Neuroscience, 2012, 3, 665-673.	3.5	8
34	Structurally Diverse GABA Antagonists Interact Differently with Open and Closed Conformational States of the Ï ₁ Receptor. ACS Chemical Neuroscience, 2012, 3, 293-301.	3 . 5	13
35	2′â€Methoxyâ€6â€methylflavone: a novel anxiolytic and sedative with subtype selective activating and modulating actions at GABA _A receptors. British Journal of Pharmacology, 2012, 165, 880-896.	5.4	44
36	Agonist responses of (R)- and (S)-3-fluoro- \hat{l}^3 -aminobutyric acids suggest an enantiomeric fold for GABA binding to GABAC receptors. Chemical Communications, 2011, 47, 7956.	4.1	32

#	Article	lF	CITATIONS
37	Novel Cyclic Phosphinic Acids as GABA _C i•Receptor Antagonists: Design, Synthesis, and Pharmacology. ACS Medicinal Chemistry Letters, 2011, 2, 11-16.	2.8	27
38	3-Hydroxy-2′-methoxy-6-methylflavone: A potent anxiolytic with a unique selectivity profile at GABAA receptor subtypes. Biochemical Pharmacology, 2011, 82, 1971-1983.	4.4	37
39	ldentification of Benzopyranâ€4â€one Derivatives (Isoflavones) as Positive Modulators of GABA _A Receptors. ChemMedChem, 2011, 6, 1340-1346.	3.2	19
40	Medicinal chemistry of i-GABA _C receptors. Future Medicinal Chemistry, 2011, 3, 197-209.	2.3	41
41	Regulation of Lowâ€Density Lipoprotein Receptor and 3â€Hydroxyâ€3â€Methylglutaryl Coenzyme A Reductase Expression by <i>Zingiber officinale</i> in the Liver of Highâ€Fat Dietâ€Fed Rats. Basic and Clinical Pharmacology and Toxicology, 2010, 106, 389-395.	2.5	56
42	Microwave-enhanced synthesis of 2,3,6-trisubstituted pyridazines: application to four-step synthesis of gabazine (SR-95531). Organic and Biomolecular Chemistry, 2010, 8, 4131.	2.8	16
43	Guanidino Acids Act as 🗓 GABAC Receptor Antagonists. Neurochemical Research, 2009, 34, 1704-1711.	3.3	22
44	7-Hydroxy-benzopyran-4-one Derivatives: A Novel Pharmacophore of Peroxisome Proliferator-Activated Receptor \hat{l} ± and $\hat{-l}$ 3 (PPAR \hat{l} ± and \hat{l} 3) Dual Agonists. Journal of Medicinal Chemistry, 2009, 52, 6835-6850.	6.4	83
45	Ph2S2–CaH2 in N-methyl-2-pyrrolidone as an efficient protocol for chemoselective cleavage of aryl alkyl ethers. Tetrahedron, 2006, 62, 4201-4204.	1.9	13