

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3550773/publications.pdf Version: 2024-02-01

DINC IU

ARTICLE	IF	CITATIONS
Grid-Synchronization Stability Analysis and Loop Shaping for PLL-Based Power Converters With Different Reactive Power Control. IEEE Transactions on Smart Grid, 2020, 11, 501-516.	9.0	127
Decentralized Nonlinear Control of Wind Turbine With Doubly Fed Induction Generator. IEEE Transactions on Power Systems, 2008, 23, 613-621.	6.5	111
Nonlinear dynamic load modelling: model and parameter estimation. IEEE Transactions on Power Systems, 1996, 11, 1689-1697.	6.5	86
Continuation Three-Phase Power Flow: A Tool for Voltage Stability Analysis of Unbalanced Three-Phase Power Systems. IEEE Transactions on Power Systems, 2005, 20, 1320-1329.	6.5	81
Oscillation Energy Analysis of Inter-Area Low-Frequency Oscillations in Power Systems. IEEE Transactions on Power Systems, 2016, 31, 1195-1203.	6.5	73
MDP-Based Distribution Network Reconfiguration With Renewable Distributed Generation: Approximate Dynamic Programming Approach. IEEE Transactions on Smart Grid, 2020, 11, 3620-3631.	9.0	73
Optimal Control for AWS-Based Wave Energy Conversion System. IEEE Transactions on Power Systems, 2009, 24, 1747-1755.	6.5	69
Modeling, Control Strategy, and Power Conditioning for Direct-Drive Wave Energy Conversion to Operate With Power Grid. Proceedings of the IEEE, 2013, 101, 925-941.	21.3	64
Placing Grid-Forming Converters to Enhance Small Signal Stability of PLL-Integrated Power Systems. IEEE Transactions on Power Systems, 2021, 36, 3563-3573.	6.5	60
Dynamic equivalents of power systems with online measurements. Part 1: theory. IET Generation, Transmission and Distribution, 2004, 151, 175.	1.1	52
Analytical Assessment for Transient Stability Under Stochastic Continuous Disturbances. IEEE Transactions on Power Systems, 2018, 33, 2004-2014.	6.5	49
Responses and stability of power system under small Gauss type random excitation. Science China Technological Sciences, 2012, 55, 1873-1880.	4.0	46
Markov Decision Process-Based Resilience Enhancement for Distribution Systems: An Approximate Dynamic Programming Approach. IEEE Transactions on Smart Grid, 2020, 11, 2498-2510.	9.0	46
Composite load models based on field measurements and their applications in dynamic analysis. IET Generation, Transmission and Distribution, 2007, 1, 724.	2.5	44
Coordinated Control of Air-Conditioning Loads for System Frequency Regulation. IEEE Transactions on Smart Grid, 2021, 12, 548-560.	9.0	44
A Modified DPWM With Neutral Point Voltage Balance Capability for Three-Phase Vienna Rectifiers. IEEE Transactions on Power Electronics, 2021, 36, 263-273.	7.9	41
A Si/SiC Hybrid Five-Level Active NPC Inverter With Improved Modulation Scheme. IEEE Transactions on Power Electronics, 2020, 35, 4835-4846.	7.9	39
Symmetric Admittance Modeling for Stability Analysis of Grid-Connected Converters. IEEE Transactions on Energy Conversion, 2020, 35, 434-444.	5.2	36
	Grid Synchronization Stability Analysis and Loop Shaping for PLI-Based Power Converters With Different Reactive Power Control. IEEE Transactions on Smart Grid, 2020, 11, 501-516. Decentralized Nonlinear Control of Wind Turbine With Doubly Fed Induction Generator. IEEE Transactions on Power Systems, 2008, 23, 613-621. Nonlinear dynamic load modeling: model and parameter estimation. IEEE Transactions on Power Systems, 1996, 11, 1669-1697. Continuation Three-Phase Power Flow: A Tool for Voltage Stability Analysis of Unbalanced Three-Phase Power Systems, LEEE Transactions on Power Systems, 2005, 20, 1320-1329. Oscillation Energy Analysis of Inter-Area Low-Frequency Oscillations in Power Systems. IEEE Transactions on Power Systems, 2016, 31, 1195-1203. MDP-Based Distribution Network Reconfiguration With Renewable Distributed Ceneration: Approximate Dynamic Porgramming Approach. IEEE Transactions on Smart Grid, 2020, 11, 3620-3631. Optimal Control for AWS-Based Wave Energy Conversion System, IEEE Transactions on Power Systems, 2009, 24, 1742-1755. Modeling, Control Strategy, and Power Conditioning for Direct-Drive Wave Energy Conversion to Operate With Power Grid. Proceedings of the IEEE, 2013, 101, 925-941. Placing Grid Forming Converters to Enhance Small Signal Stability of PLL-Integrated Power Systems. IEEE Transactions on Power Systems. IEEE Transactions on Power Systems, 2018, 33, 2004-2014. Placing Grid Forming Converters to Enhance Small Signal Stability of PLL-Integrated Power Systems. IEEE Transactions on Power Systems, 2018, 33, 2004-2014. Pacing Grid Forming Converters to Enh	Criticity of the second stability Analysis and Loop Shaping for PLI-Based Power Converters With 9:0 Decentralized Nonlinear Control of Wind Turbine With Doubly Fed Induction Generator. IEEE 6:5 Nonlinear dynamic load modelling: model and parameter estimation. IEEE Transactions on Power Systems, 2008, 23, 613-621. 6:5 Nonlinear dynamic load modelling: model and parameter estimation. IEEE Transactions on Power Systems, 1996, 11, 1699-1697. 6:5 Continuation Three-Phase Power flow: A Tool for Voltage Stability Analysis of Unbalanced Three Phase Power Systems, 2016, 3:11351-1203. 6:5 Oscillation Energy Analysis of Inter-Area Low-Frequency Oscillations in Power Systems. IEEE 6:5 MDPBased Distribution Network Reconfiguration With Renewable Distributed Ceneration: Approximate Dynamic Programming Approach. IEEE Transactions on Power Systems, 2016, 3:1, 1351-1203. 9:0 Optimal Control for AWS Based Wave Energy Conversion System. IEEE Transactions on Power Systems, 2016, 3:1, 1351-1203. 6:5 MDPBased Distribution Network Reconfiguration With Renewable Distributed Ceneration: Approximate Dynamic Programming Approach. IEEE Transactions on Smart Grid, 2020, 11, 3620-3631. 9:0 Optimal Control for AWS Based Wave Energy Conversion System. IEEE Transactions on Power Systems, 2016, 3:1, 1352 6:5 Pacing Crid Forming Converters to Enhance Small Signal Stability of PLI-Integrated Power Systems. 6:5 Dynamic equivolents of power systems, 2011, 3:6, 2552573. 6:3 </td

#	Article	IF	CITATIONS
19	Determination of economic dispatch of wind farm-battery energy storage system using Genetic Algorithm. International Transactions on Electrical Energy Systems, 2014, 24, 264-280.	1.9	35
20	Singular Perturbation for the Dynamic Modeling of Integrated Energy Systems. IEEE Transactions on Power Systems, 2020, 35, 1718-1728.	6.5	35
21	Data-Driven Arbitrary Polynomial Chaos-Based Probabilistic Load Flow Considering Correlated Uncertainties. IEEE Transactions on Power Systems, 2019, 34, 3274-3276.	6.5	29
22	Modeling and Control of Wind Turbine with Doubly Fed Induction Generator. , 2006, , .		28
23	Analytic Analysis for Dynamic System Frequency in Power Systems Under Uncertain Variability. IEEE Transactions on Power Systems, 2019, 34, 982-993.	6.5	28
24	Modeling of Wind Speeds Inside a Wind Farm With Application to Wind Farm Aggregate Modeling Considering LVRT Characteristic. IEEE Transactions on Energy Conversion, 2020, 35, 508-519.	5.2	28
25	Damping Effect of Virtual Synchronous Machines Provided by a Dynamical Virtual Impedance. IEEE Transactions on Energy Conversion, 2021, 36, 570-573.	5.2	28
26	Stochastic Dynamic Analysis for Power Systems Under Uncertain Variability. IEEE Transactions on Power Systems, 2018, 33, 3789-3799.	6.5	27
27	Equivalent modeling of wind energy conversion considering overall effect of pitch angle controllers in wind farm. Applied Energy, 2018, 222, 485-496.	10.1	27
28	Generic System Frequency Response Model for Power Grids With Different Generations. IEEE Access, 2020, 8, 14314-14321.	4.2	27
29	Identification of Generalized Short-Circuit Ratio for On-Line Stability Monitoring of Wind Farms. IEEE Transactions on Power Systems, 2020, 35, 3282-3285.	6.5	26
30	Optimal control strategy of voltage source converterâ€based highâ€voltage direct current under unbalanced grid voltage conditions. IET Generation, Transmission and Distribution, 2016, 10, 444-451.	2.5	20
31	An Adaptive Ensemble Data Driven Approach for Nonparametric Probabilistic Forecasting of Electricity Load. IEEE Transactions on Smart Grid, 2021, 12, 5396-5408.	9.0	20
32	Sequential parameter estimation of a simplified induction motor load model. IEEE Transactions on Power Systems, 1996, 11, 319-324.	6.5	19
33	The disturbance source identification of forced power oscillation caused by continuous cyclical load. , 2011, , .		18
34	High-voltage Ride Through Strategy for DFIG Considering Converter Blocking of HVDC System. Journal of Modern Power Systems and Clean Energy, 2020, 8, 491-498.	5.4	18
35	Partial discharge diagnosis by simultaneous observation of discharge pulses and vibration signal. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 288-295.	2.9	17
36	Research on the fault diagnosis method for slip ring device in doublyâ€fed induction generators based on vibration. IET Renewable Power Generation, 2017, 11, 289-295.	3.1	16

#	Article	IF	CITATIONS
37	GIS mechanical state identification and defect diagnosis technology based on selfâ€excited vibration of assembled circuit breaker. IET Science, Measurement and Technology, 2020, 14, 56-63.	1.6	16
38	A P-Q Coordination Based Model Predictive Control for DFIG High-Voltage Ride Through. IEEE Transactions on Energy Conversion, 2022, 37, 254-263.	5.2	16
39	Data-driven probabilistic small signal stability analysis for grid-connected PV systems. International Journal of Electrical Power and Energy Systems, 2019, 113, 824-831.	5.5	15
40	Hierarchical Control of Air-Conditioning Loads for Flexible Demand Response in the Short Term. IEEE Access, 2019, 7, 184611-184621.	4.2	14
41	Dynamic equivalent modeling of FSIG based wind farm according to slip coherency. , 2009, , .		13
42	Identifiability and identification of a Synthesis Load Model. Science China Technological Sciences, 2010, 53, 461-468.	4.0	13
43	Wind–Wave Coupling Model for Wave Energy Forecast. IEEE Transactions on Sustainable Energy, 2019, 10, 586-595.	8.8	13
44	Analysis of Dynamic Voltage Fluctuation Mechanism in Interconnected Power Grid with Stochastic Power Disturbances. Journal of Modern Power Systems and Clean Energy, 2020, 8, 38-45.	5.4	13
45	A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures. Renewable and Sustainable Energy Reviews, 2022, 156, 111945.	16.4	13
46	Common-Mode Frequency in Converter-Integrated Power Systems: Definition, Analysis, and Quantitative Evaluation. IEEE Transactions on Power Systems, 2022, 37, 4846-4860.	6.5	13
47	Peer-to-Peer Energy Trading Using Prediction Intervals of Renewable Energy Generation. IEEE Transactions on Smart Grid, 2023, 14, 1454-1465.	9.0	13
48	Parameter Identification of Synchronous Generator by Using Ant Colony Optimization Algorithm. , 2007, , .		12
49	Security Constrained P2P Energy Trading in Distribution Network: An Integrated Transaction and Operation Model. IEEE Transactions on Smart Grid, 2022, 13, 4773-4786.	9.0	12
50	Stochastic synchronization of nonlinear energy resource system via partial feedback control. Nonlinear Dynamics, 2012, 70, 2269-2278.	5.2	11
51	Study of the load reduction for hydro-generator bearing by hybrid magnetic levitation. International Journal of Applied Electromagnetics and Mechanics, 2013, 43, 215-226.	0.6	11
52	Interaction and Coordination among Nuclear Power Plants, Power Grids and Their Protection Systems. Energies, 2016, 9, 306.	3.1	11
53	Research on load characteristics of energy-saving lamp and LED lamp. , 2016, , .		11
54	Incentive-Compatible Market Clearing for a Two-Stage Integrated Electricity-Gas-Heat Market. IEEE Access, 2019, 7, 120984-120996.	4.2	11

#	Article	IF	CITATIONS
55	Probabilistic Preassessment Method of Parameter Identification Accuracy With an Application to Identify the Drive Train Parameters of DFIG. IEEE Transactions on Power Systems, 2020, 35, 1769-1782.	6.5	11
56	Long-Term Voltage Stability-Constrained Coordinated Scheduling for Gas and Power Grids With Uncertain Wind Power. IEEE Transactions on Sustainable Energy, 2022, 13, 363-377.	8.8	11
57	A New Vibration Analysis Approach for Monitoring the Working Condition of a High-Voltage Shunt Reactor. IEEE Access, 2021, 9, 46487-46504.	4.2	11
58	Implementation of hybrid short-term load forecasting system with analysis of temperature sensitivities. Soft Computing, 2008, 12, 633-638.	3.6	10
59	Parameter estimation of drive system in a fixedâ€speed wind turbine by utilising turbulence excitations. IET Generation, Transmission and Distribution, 2013, 7, 665-673.	2.5	10
60	SSR Analysis of DFIG-Based Wind Farm With VSM Control Strategy. IEEE Access, 2019, 7, 118702-118711.	4.2	10
61	Impedance Modeling and Analysis for DFIG-Based Wind Farm in SSO Studies. IEEE Access, 2020, 8, 158380-158390.	4.2	10
62	Analytic assessment of the power system frequency security. IET Generation, Transmission and Distribution, 2021, 15, 2215-2225.	2.5	10
63	Incorporating demand response in two-stage frequency emergency control. International Journal of Electrical Power and Energy Systems, 2021, 131, 107122.	5.5	9
64	A Multi-Timescale Allocation Algorithm of Energy and Power for Demand Response in Smart Grids: A Stackelberg Game Approach. IEEE Transactions on Sustainable Energy, 2022, 13, 1580-1593.	8.8	9
65	The third-order induction motor parameter estimation using an adaptive genetic algorithm. , 0, , .		8
66	Modeling and control of the wind turbine with the Direct Drive Permanent Magnet Generator integrated to power grid. , 2008, , .		8
67	Dynamic equivalent method of interconnected power systems with consideration of motor loads. Science China Technological Sciences, 2010, 53, 902-908.	4.0	8
68	An efficient multi-area networks-merging model for power system online dynamic modeling. CSEE Journal of Power and Energy Systems, 2015, 1, 37-43.	1.1	8
69	Generalized Discrete-Time Equivalent Model for Dynamic Simulation of Regional Power Area. IEEE Transactions on Power Systems, 2018, 33, 6452-6465.	6.5	8
70	Coordinated scheduling of integrated power and gas grids in consideration of gas flow dynamics. Energy, 2021, 220, 119760.	8.8	8
71	Research on an Axial Maglev Device With Primary Superconductive Coils for a 1000 MW Hydraulic Generator Set. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-6.	1.7	7
72	Phase–amplitude model for doubly fed induction generators. Journal of Modern Power Systems and Clean Energy, 2019, 7, 369-379.	5.4	7

#	Article	IF	CITATIONS
73	Small-Signal Stability Assessment of Heterogeneous Grid-Following Converter Power Systems Based on Grid Strength Analysis. IEEE Transactions on Power Systems, 2023, 38, 2566-2579.	6.5	7
74	A real-time monitoring method for power system steady state angle stability based on WAMS. , 2005, , .		6
75	Control strategy for AWS based wave energy conversion system. , 2010, , .		6
76	Distinguishability analysis of controller parameters with applications to DFIG based wind turbine. Science China Technological Sciences, 2013, 56, 2465-2472.	4.0	6
77	A coordinated control method to smooth short-term power fluctuations of hybrid offshore renewable energy conversion system (HORECS). , 2015, , .		6
78	Transfer function based equivalent modeling method for wind farm. Journal of Modern Power Systems and Clean Energy, 2019, 7, 549.	5.4	6
79	Generalized Discrete-Time Equivalent Model for Representing Interfaces in Wide-Area Power Systems. IEEE Transactions on Smart Grid, 2019, 10, 3504-3514.	9.0	6
80	Analytic Estimation Method of Forced Oscillation Amplitude Under Stochastic Continuous Disturbances. IEEE Transactions on Smart Grid, 2019, 10, 4026-4036.	9.0	6
81	Singular value decompositionâ€based load indexes for load profiles clustering. IET Generation, Transmission and Distribution, 2020, 14, 4164-4172.	2.5	6
82	Evaluation of methods for measuring the insolvability of power flow. , 2008, , .		5
83	Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator. Frontiers of Mechanical Engineering, 2017, 12, 367-376.	4.3	5
84	Sequential steady-state security region-based transmission power system resilience enhancement. Renewable and Sustainable Energy Reviews, 2021, 151, 111533.	16.4	5
85	Power transformer fault diagnosis based on extension theory. , 2005, , .		4
86	Comparisons between the Load Models with Considering Distribution Network Directly or Indirectly. , 2008, , .		4
87	Load modeling in China —Research, applications & tendencies. , 2008, , .		4
88	Parameter Tuning for Wind Turbine with Doubly Fed Induction Generator Using PSO. , 2010, , .		4
89	Mechanism analysis of power load using difference equation approach. , 2016, , .		4
90	A Bottom-up Method for Probabilistic Short-Term Load Forecasting Based on Medium Voltage Load Patterns, IEEE Access, 2021, 9, 76551-76563	4.2	4

#	Article	IF	CITATIONS
91	Best response-based individually look-ahead scheduling for natural gas and power systems. Applied Energy, 2021, 304, 117673.	10.1	4
92	An Online Multifault Diagnosis Scheme for Battery Packs Based on Voltage Envelope Relationship. IEEE Transactions on Transportation Electrification, 2023, 9, 1008-1020.	7.8	4
93	Sequential parameter estimation of a simplified induction motor load model. , 0, , .		3
94	Feasibility research on DC generator based wind power generation system. , 2009, , .		3
95	Simulation and modeling of blended constant-frequency and variable-frequency air-conditioner. , 2015, , .		3
96	General Forced Oscillations in a Real Power Grid Integrated with Large Scale Wind Power. Energies, 2016, 9, 525.	3.1	3
97	Simulation on power characteristic of UHVDC during commutation failure and DC block. , 2017, , .		3
98	Modeling methods for electric loads in a real power grid. , 2018, , .		3
99	Simplified Dynamic Model of the Electric Load Supplied by a Switching Power Supply. , 2020, , .		3
100	Calculation of Stable Domain of DFIG-Based Wind Farm in Series Compensated Power Systems. IEEE Access, 2020, 8, 34900-34908.	4.2	3
101	Integrated Model of DFIG and SFR for Frequency Regulation Control Research of Wind Turbine Generator. , 2021, , .		3
102	On-line measurement for power angle and circuit parameter in the turbo steam generator with the FEM based. , 0, , .		2
103	Transient analysis of synchronous generator with stator winding faults based on starting process. , 2008, , .		2
104	Computation comparisons of power system dynamics under random excitation. , 2014, , .		2
105	Quasi hamilton system stochastic averaging and EEAC combined transient stability analysis method. , 2016, , .		2
106	Design and Analysis of a Superconducting Induction Magnetic Levitation Device for Vertical Hydraulic Generator. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	2
107	Equivalent Modeling of Direct-drive Wave Array in Frequency Domain. , 2018, , .		2

108 Optimal Power Flow Calculation Using BFGS-Based Optimisation Scheme. , 2018, , .

#	Article	IF	CITATIONS
109	Study on peak cutting and valley filling based on flexible load. , 2020, , .		2
110	Stochastic Control for Intra-Region Probability Maximization of Multi-Machine Power Systems Based on the Quasi-Generalized Hamiltonian Theory. Energies, 2020, 13, 167.	3.1	2
111	Integrated diagnosis techniques of high voltage induction machine with rotor winding faults. , 2005, , .		1
112	Deterministic and probabilistic analysis of static voltage stability in power systems. , 2009, , .		1
113	A mixed-time-scale low-Reynolds-number one-equation turbulenceÂmodel. Journal of Turbulence, 2013, 14, 55-87.	1.4	1
114	Equivalent modeling of wind farm in frequency domain. , 2014, , .		1
115	Characteristics analysis and practical model of UHVDC systems under large disturbance. , 2017, , .		1
116	Stochastic Stability Analysis of the Power System with Losses. Energies, 2018, 11, 678.	3.1	1
117	Optimized Planning of Inverter Interfaced Distributed Generation Considering Relay Constraints. , 2018, , .		1
118	Research on the correlation of wind farmsâ $\in^{\rm m}$ outputs based on fluctuation division and time shift technique. , 2019, , .		1
119	Design and Comparison of Segmented Armature Windings for Superconducting Wind Turbine Generators with Multiple Converters. , 2019, , .		1
120	Parameter Identification of Load Model Using Scatter Plot Based Global Sensitivity Analysis. , 2021, , .		1
121	Hierarchical economic control of air-conditioning loads to compensate for fluctuations in distributed photovoltaic generation. International Journal of Electrical Power and Energy Systems, 2022, 142, 108196.	5.5	1
122	A new generalized load model of power systems and its applications. , 2011, , .		0
123	A distributed strategy for flexible load as Spinning Reserves in power system. , 2015, , .		0
124	On static load model of variable frequency based motor drive. , 2015, , .		0
125	Coordinated optimization of VSC-HVDC controller considering DC line. , 2015, , .		0
126	Quasi generalized Hamiltonian model of power systems considering the reference node under stochastic excitations. , 2015, , .		0

#	Article	IF	CITATIONS
127	Design and analysis of a superconducting induction magnetic levitation device for hydraulic turbo-generator. , 2016, , .		0
128	Modeling and simulation analysis of large-scale smelting load. , 2016, , .		0
129	Maximization of reliability of stochastic multiple machines power system based on the quasi Hamiltonian system. , 2017, , .		0
130	Optimal Control of Generators and Series Compensators within Multi-space-time Scale. , 2017, , .		0
131	Modeling and optimization of the maglev device for a vertical hydro-turbine. International Journal of Applied Electromagnetics and Mechanics, 2017, 54, 187-197.	0.6	0
132	Frequency Characteristic of New-type Load Considering Power Electronics Technology. , 2017, , .		0
133	System Resilience Enhancement Against Cascading Failure in Consideration of Uncertainty. , 2020, , .		0
134	Hierarchical Control of Heterogeneous Inverter Air-Conditionings for Primary Frequency Regulation. , 2020, , .		0
135	Calculation of Sub-synchronous Oscillation Probability Based on Inverse Function. , 2020, , .		0
136	A bangâ€bang control based waterâ€loop heat pump load aggregation method for power levelling dispatch. IET Smart Grid, 2021, 4, 321-333.	2.2	0
137	Simplified Model of Distributed PV Generation and Influence Analysis on Load Characteristics. , 2021, , .		0
138	Anomaly Identification for Active Distribution Networks Using Random Matrix Theory. , 2021, , .		0
139	Simplified Modeling of the Power-electronized Load Based on Sensitivity Analysis. , 2021, , .		0