Yun-bing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3550727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Processing and properties of porous poly(l-lactide)/bioactive glass composites. Biomaterials, 2004, 25, 2489-2500.	11.4	211
2	Polyethylene-poly(L-lactide) diblock copolymers: Synthesis and compatibilization of poly(L-lactide)/polyethylene blends. Journal of Polymer Science Part A, 2001, 39, 2755-2766.	2.3	193
3	Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioactive Materials, 2021, 6, 4110-4140.	15.6	191
4	Inflammation-Responsive Drug-Loaded Hydrogels with Sequential Hemostasis, Antibacterial, and Anti-Inflammatory Behavior for Chronically Infected Diabetic Wound Treatment. ACS Applied Materials & Interfaces, 2021, 13, 33584-33599.	8.0	175
5	Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chemical Engineering Journal, 2021, 411, 128564.	12.7	168
6	Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. Journal of Controlled Release, 2020, 324, 204-217.	9.9	145
7	Evolution of implantable and insertable drug delivery systems. Journal of Controlled Release, 2014, 181, 1-10.	9.9	139
8	A spatiotemporal release platform based on pH/ROS stimuli-responsive hydrogel in wound repairing. Journal of Controlled Release, 2022, 341, 147-165.	9.9	111
9	Synergistic Chemical and Photodynamic Antimicrobial Therapy for Enhanced Wound Healing Mediated by Multifunctional Light-Responsive Nanoparticles. Biomacromolecules, 2019, 20, 4581-4592.	5.4	104
10	Reactive Oxygen Species Responsive Theranostic Nanoplatform for Two-Photon Aggregation-Induced Emission Imaging and Therapy of Acute and Chronic Inflammation. ACS Nano, 2020, 14, 5862-5873.	14.6	100
11	Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 20715-20724.	8.0	94
12	Redox and pH Dual-Responsive Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 18489-18498.	8.0	91
13	A pH-responsive drug delivery system with an aggregation-induced emission feature for cell imaging and intracellular drug delivery. Polymer Chemistry, 2015, 6, 4715-4718.	3.9	82
14	Peptide-/Drug-Directed Self-Assembly of Hybrid Polyurethane Hydrogels for Wound Healing. ACS Applied Materials & Interfaces, 2019, 11, 37147-37155.	8.0	81
15	In-situ doping of a conductive hydrogel with low protein absorption and bacterial adhesion for electrical stimulation of chronic wounds. Acta Biomaterialia, 2019, 89, 217-226.	8.3	80
16	pH-sensitive doxorubicin-conjugated prodrug micelles with charge-conversion for cancer therapy. Acta Biomaterialia, 2018, 70, 186-196.	8.3	79
17	Superhydrophilic versus normal polydopamine coating: A superior and robust platform for synergistic antibacterial and antithrombotic properties. Chemical Engineering Journal, 2020, 402, 126196.	12.7	78
18	Highly Stretchable and Conductive Self-Healing Hydrogels for Temperature and Strain Sensing and Chronic Wound Treatment. ACS Applied Materials & Interfaces, 2020, 12, 40990-40999.	8.0	75

#	Article	IF	CITATIONS
19	Radical polymerization-crosslinking method for improving extracellular matrix stability in bioprosthetic heart valves with reduced potential for calcification and inflammatory response. Acta Biomaterialia, 2018, 82, 44-55.	8.3	69
20	Synthesis of Polybutadieneâ^'Polylactide Diblock Copolymers Using Aluminum Alkoxide Macroinitiators. Kinetics and Mechanism. Macromolecules, 2000, 33, 7395-7403.	4.8	68
21	Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring. Biosensors and Bioelectronics, 2020, 155, 112105.	10.1	68
22	Green Tea Polyphenol Induced Mg ²⁺ -rich Multilayer Conversion Coating: Toward Enhanced Corrosion Resistance and Promoted in Situ Endothelialization of AZ31 for Potential Cardiovascular Applications. ACS Applied Materials & Interfaces, 2019, 11, 41165-41177.	8.0	65
23	Epigallocatechin gallate mediated sandwich-like coating for mimicking endothelium with sustained therapeutic nitric oxide generation and heparin release. Biomaterials, 2021, 269, 120418.	11.4	61
24	A tailored extracellular matrix (ECM) - Mimetic coating for cardiovascular stents by stepwise assembly of hyaluronic acid and recombinant human type III collagen. Biomaterials, 2021, 276, 121055.	11.4	58
25	Redox-Responsive Biomimetic Polymeric Micelle for Simultaneous Anticancer Drug Delivery and Aggregation-Induced Emission Active Imaging. Bioconjugate Chemistry, 2018, 29, 1897-1910.	3.6	54
26	Catechol/polyethyleneimine conversion coating with enhanced corrosion protection of magnesium alloys: potential applications for vascular implants. Journal of Materials Chemistry B, 2018, 6, 6936-6949.	5.8	49
27	ROS Responsive Nanoplatform with Twoâ€Photon AIE Imaging for Atherosclerosis Diagnosis and "Twoâ€Pronged―Therapy. Small, 2020, 16, e2003253.	10.0	49
28	Construction of multifunctional wound dressings with their application in chronic wound treatment. Biomaterials Science, 2022, 10, 4058-4076.	5.4	49
29	A synergistic antibacterial effect between terbium ions and reduced graphene oxide in a poly(vinyl) Tj ETQq1 1 0 2019, 7, 538-547.	.784314 rg 5.8	gBT /Overlock 48
30	Micelle-Embedded Layer-by-Layer Coating with Catechol and Phenylboronic Acid for Tunable Drug Loading, Sustained Release, Mild Tissue Response, and Selective Cell Fate for Re-endothelialization. ACS Applied Materials & Interfaces, 2019, 11, 10337-10350.	8.0	48
31	High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching. Materials Science and Engineering C, 2018, 90, 602-609.	7.3	46
32	Development of Innovative Biomaterials and Devices for the Treatment of Cardiovascular Diseases. Advanced Materials, 2022, 34, .	21.0	46
33	Chromium Cross-Linking Based Immobilization of Silver Nanoparticle Coating on Leather Surface with Broad-Spectrum Antimicrobial Activity and Durability. ACS Applied Materials & Interfaces, 2019, 11, 2352-2363.	8.0	44
34	Multifunctional coatings that mimic the endothelium: surface bound active heparin nanoparticles with <i>in situ</i> generation of nitric oxide from nitrosothiols. Journal of Materials Chemistry B, 2018, 6, 5582-5595.	5.8	43
35	Intrinsic Antibacterial and Conductive Hydrogels Based on the Distinct Bactericidal Effect of Polyaniline for Infected Chronic Wound Healing. ACS Applied Materials & Interfaces, 2021, 13, 52308-52320.	8.0	41
36	Vascular restoration therapy and bioresorbable vascular scaffold. International Journal of Energy Production and Management, 2014, 1, 49-55.	3.7	40

#	Article	IF	CITATIONS
37	Heart Valves Cross-Linked with Erythrocyte Membrane Drug-Loaded Nanoparticles as a Biomimetic Strategy for Anti-coagulation, Anti-inflammation, Anti-calcification, and Endothelialization. ACS Applied Materials & Interfaces, 2020, 12, 41113-41126.	8.0	40
38	Microneedle-mediated vascular endothelial growth factor delivery promotes angiogenesis and functional recovery after stroke. Journal of Controlled Release, 2021, 338, 610-622.	9.9	40
39	Injectable multifunctional hyaluronic acid/methylcellulose hydrogels for chronic wounds repairing. Carbohydrate Polymers, 2022, 289, 119456.	10.2	40
40	Polycaprolactone vascular graft with epigallocatechin gallate embedded sandwiched layer-by-layer functionalization for enhanced antithrombogenicity and anti-inflammation. Journal of Controlled Release, 2020, 320, 226-238.	9.9	39
41	Coaxial electrospinning multicomponent functional controlled-release vascular graft: Optimization of graft properties. Colloids and Surfaces B: Biointerfaces, 2017, 152, 432-439.	5.0	37
42	A robust mussel-inspired zwitterionic coating on biodegradable poly(L-lactide) stent with enhanced anticoagulant, anti-inflammatory, and anti-hyperplasia properties. Chemical Engineering Journal, 2022, 427, 130910.	12.7	36
43	Multi-stimuli responsive polymeric prodrug micelles for combined chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 5267-5279.	5.8	35
44	Polyzwitterion-crosslinked hybrid tissue with antithrombogenicity, endothelialization, anticalcification properties. Chemical Engineering Journal, 2021, 410, 128244.	12.7	34
45	Synthesis and Characterization of a Novel Macroinitiator of Poly(ethylene oxide) with a 4-Hydroxy-2,2,6,6-tetramethylpiperidinyloxy End Group:Â Initiation of the Polymerization of Styrene by a "Living―Radical Mechanism. Macromolecules, 1999, 32, 2480-2483.	4.8	33
46	Dopamine-assisted deposition of poly (ethylene imine) for efficient heparinization. Colloids and Surfaces B: Biointerfaces, 2016, 144, 90-98.	5.0	33
47	Biomimetic-Coated Nanoplatform with Lipid-Specific Imaging and ROS Responsiveness for Atherosclerosis-Targeted Theranostics. ACS Applied Materials & Interfaces, 2021, 13, 35410-35421.	8.0	33
48	A Polyphenol-Network-Mediated Coating Modulates Inflammation and Vascular Healing on Vascular Stents. ACS Nano, 2022, 16, 6585-6597.	14.6	33
49	Dual-Responsive Doxorubicin-Conjugated Polymeric Micelles with Aggregation-Induced Emission Active Bioimaging and Charge Conversion for Cancer Therapy. Bioconjugate Chemistry, 2018, 29, 4050-4061.	3.6	32
50	Cross-Linking Methacrylated Porcine Pericardium by Radical Polymerization Confers Enhanced Extracellular Matrix Stability, Reduced Calcification, and Mitigated Immune Response to Bioprosthetic Heart Valves. ACS Biomaterials Science and Engineering, 2019, 5, 1822-1832.	5.2	32
51	Catechol-mediated and copper-incorporated multilayer coating: An endothelium-mimetic approach for blood-contacting devices. Journal of Controlled Release, 2020, 321, 59-70.	9.9	32
52	Recognition by Lipases of ω-Hydroxyl Macroinitiators for Diblock Copolymer Synthesis. Macromolecules, 2002, 35, 7606-7611.	4.8	31
53	Injectable conductive and angiogenic hydrogels for chronic diabetic wound treatment. Journal of Controlled Release, 2022, 344, 249-260.	9.9	31
54	Controlled Radical Copolymerization of Styrene and the Macromonomer of PEO with a Methacryloyl End Group. Macromolecules, 1998, 31, 4057-4060.	4.8	30

#	Article	IF	CITATIONS
55	A biomimetic and pH-sensitive polymeric micelle as carrier for paclitaxel delivery. International Journal of Energy Production and Management, 2018, 5, 15-24.	3.7	30
56	Substrate stiffness differentially impacts autophagy of endothelial cells and smooth muscle cells. Bioactive Materials, 2021, 6, 1413-1422.	15.6	30
57	A conformally adapted all-in-one hydrogel coating: towards robust hemocompatibility and bactericidal activity. Journal of Materials Chemistry B, 2021, 9, 2697-2708.	5.8	30
58	Reusable electrochemical non-enzymatic glucose sensors based on Au-inlaid nanocages. Nano Research, 2022, 15, 6490-6499.	10.4	30
59	In situ synthesis of multidentate PEGylated chitosan modified gold nanoparticles with good stability and biocompatibility. RSC Advances, 2015, 5, 70109-70116.	3.6	29
60	Dissolving microneedle-encapsulated drug-loaded nanoparticles and recombinant humanized collagen type III for the treatment of chronic wound <i>via</i> anti-inflammation and enhanced cell proliferation and angiogenesis. Nanoscale, 2022, 14, 1285-1295.	5.6	29
61	Turn-on fluorescent probe for lipid droplet specific imaging of fatty liver and atherosclerosis. Journal of Materials Chemistry B, 2021, 9, 4050-4055.	5.8	28
62	A thrombin-triggered self-regulating anticoagulant strategy combined with anti-inflammatory capacity for blood-contacting implants. Science Advances, 2022, 8, eabm3378.	10.3	28
63	Drug carrier system self-assembled from biomimetic polyphosphorycholine and biodegradable polypeptide based diblock copolymers. Polymer, 2016, 100, 45-55.	3.8	27
64	Biodegradable phosphorylcholine copolymer for cardiovascular stent coating. Journal of Materials Chemistry B, 2020, 8, 5361-5368.	5.8	27
65	A facile and versatile superhydrophilic coating on biodegradable PLA stent with stepwise assembly of metal/phenolic networks for mimicking endothelium function. Chemical Engineering Journal, 2022, 427, 130932.	12.7	27
66	Multiplexed nanomaterial-assisted laser desorption/ionization for pan-cancer diagnosis and classification. Nature Communications, 2022, 13, 617.	12.8	27
67	Sustained gene delivery from inflammation-responsive anti-inflammatory hydrogels promotes extracellular matrix metabolism balance in degenerative nucleus pulposus. Composites Part B: Engineering, 2022, 236, 109806.	12.0	27
68	Dressing Blood-Contacting Materials by a Stable Hydrogel Coating with Embedded Antimicrobial Peptides for Robust Antibacterial and Antithrombus Properties. ACS Applied Materials & Interfaces, 2021, 13, 38947-38958.	8.0	26
69	Microenvironment-responsive multifunctional hydrogels with spatiotemporal sequential release of tailored recombinant human collagen type III for the rapid repair of infected chronic diabetic wounds. Journal of Materials Chemistry B, 2021, 9, 9684-9699.	5.8	26
70	Two-photon AIE probe conjugated theranostic nanoparticles for tumor bioimaging and pH-sensitive drug delivery. Nano Research, 2019, 12, 1703-1712.	10.4	25
71	Photo-functionalized TiO2 nanotubes decorated with multifunctional Ag nanoparticles for enhanced vascular biocompatibility. Bioactive Materials, 2021, 6, 45-54.	15.6	25
72	A method for simultaneously crosslinking and functionalizing extracellular matrix-based biomaterials as bioprosthetic heart valves with enhanced endothelialization and reduced inflammation. Acta Biomaterialia, 2021, 119, 89-100.	8.3	25

5

#	Article	IF	CITATIONS
73	Surface modification of titanium implants by pH-Responsive coating designed for Self-Adaptive antibacterial and promoted osseointegration. Chemical Engineering Journal, 2022, 435, 134802.	12.7	25
74	High contrast stimuli-responsive luminescence switching of pyrene-1-carboxylic esters triggered by a crystal-to-crystal transition. New Journal of Chemistry, 2017, 41, 13784-13791.	2.8	24
75	Dual-Responsive Micelles with Aggregation-Induced Emission Feature and Two-Photon Aborsption for Accurate Drug Delivery and Bioimaging. Bioconjugate Chemistry, 2019, 30, 2075-2087.	3.6	24
76	Two-photon AIE luminogen labeled multifunctional polymeric micelles for theranostics. Theranostics, 2019, 9, 6618-6630.	10.0	24
77	A novel mechanism of inhibiting in-stent restenosis with arsenic trioxide drug-eluting stent: Enhancing contractile phenotype of vascular smooth muscle cells via YAP pathway. Bioactive Materials, 2021, 6, 375-385.	15.6	24
78	Oxidation-Responsive and Aggregation-Induced Emission Polymeric Micelles with Two-Photon Excitation for Cancer Therapy and Bioimaging. ACS Biomaterials Science and Engineering, 2019, 5, 2577-2586.	5.2	23
79	Hybrid Pericardium with VEGFâ€Loaded Hyaluronic Acid Hydrogel Coating to Improve the Biological Properties of Bioprosthetic Heart Valves. Macromolecular Bioscience, 2019, 19, e1800390.	4.1	23
80	Transdermal delivery of peptide and protein drugs: Strategies, advantages and disadvantages. Journal of Drug Delivery Science and Technology, 2020, 60, 102007.	3.0	23
81	Fluid shear stress activates YAP to promote epithelial–mesenchymal transition in hepatocellular carcinoma. Molecular Oncology, 2021, 15, 3164-3183.	4.6	23
82	Platelet Membrane-Coated Nanocarriers Targeting Plaques to Deliver Anti-CD47 Antibody for Atherosclerotic Therapy. Research, 2022, 2022, 9845459.	5.7	23
83	A nitric oxide-eluting and REDV peptide-conjugated coating promotes vascular healing. Biomaterials, 2022, 284, 121478.	11.4	23
84	The bifunctional SDFâ€1â€AnxA5 fusion protein protects cardiac function after myocardial infarction. Journal of Cellular and Molecular Medicine, 2019, 23, 7673-7684.	3.6	22
85	Phosphorylcholine- and cation-bearing copolymer coating with superior antibiofilm and antithrombotic properties for blood-contacting devices. Journal of Materials Chemistry B, 2020, 8, 8433-8443.	5.8	22
86	Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections. Molecular Biotechnology, 2021, 63, 1103-1124.	2.4	22
87	miR-22 eluting cardiovascular stent based on a self-healable spongy coating inhibits in-stent restenosis. Bioactive Materials, 2021, 6, 4686-4696.	15.6	21
88	Chemical bonding of biological valve leaflets with an aminated zwitterionic copolymer for long-term anticoagulation and improved anti-calcification. Chemical Engineering Journal, 2021, 426, 131803.	12.7	21
89	Bionic Tea Stain–Like, Allâ€Nanoparticle Coating for Biocompatible Corrosion Protection. Advanced Materials Interfaces, 2019, 6, 1900899	3.7	20
90	Thermo-triggered ultrafast self-healing of microporous coating for on-demand encapsulation of biomacromolecules. Biomaterials, 2019, 192, 15-25.	11.4	20

#	Article	IF	CITATIONS
91	Experimental and Numerical Simulation of Biodegradable Stents with Different Strut Geometries. Cardiovascular Engineering and Technology, 2020, 11, 36-46.	1.6	20
92	A multi-in-one strategy with glucose-triggered long-term antithrombogenicity and sequentially enhanced endothelialization for biological valve leaflets. Biomaterials, 2021, 275, 120981.	11.4	20
93	Cross-Linking Porcine Pericardium by 3,4-Dihydroxybenzaldehyde: A Novel Method to Improve the Biocompatibility of Bioprosthetic Valve. Biomacromolecules, 2021, 22, 823-836.	5.4	20
94	Dual-function hydrogels with sequential release of GSK3β inhibitor and VEGF inhibit inflammation and promote angiogenesis after stroke. Chemical Engineering Journal, 2022, 433, 133671.	12.7	20
95	Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration. International Journal of Energy Production and Management, 2016, 3, 239-245.	3.7	19
96	A thermo-sensitive, injectable and biodegradable <i>in situ</i> hydrogel as a potential formulation for uveitis treatment. Journal of Materials Chemistry B, 2019, 7, 4402-4412.	5.8	19
97	Systematic screening identifies a 2â€gene signature as a highâ€potential prognostic marker of undifferentiated pleomorphic sarcoma/myxofibrosarcoma. Journal of Cellular and Molecular Medicine, 2020, 24, 1010-1021.	3.6	19
98	Conductive dual hydrogen bonding hydrogels for the electrical stimulation of infected chronic wounds. Journal of Materials Chemistry B, 2021, 9, 8138-8146.	5.8	19
99	Sodium lignosulfonate cross-linked bioprosthetic heart valve materials for enhanced cytocompatibility, improved hemocompatibility, and reduced calcification. Composites Part B: Engineering, 2022, 234, 109669.	12.0	19
100	Preparation of organic mechanochromic fluorophores with simple structures and promising mechanochromic luminescence properties. RSC Advances, 2016, 6, 84787-84793.	3.6	18
101	Cation–anion interaction directed dual-mode switchable mechanochromic luminescence. Journal of Materials Chemistry C, 2017, 5, 8527-8534.	5.5	18
102	TPE onjugated biomimetic and biodegradable polymeric micelle for AIE active cell imaging and cancer therapy. Journal of Applied Polymer Science, 2018, 135, 45651.	2.6	18
103	Performance of PEGylated chitosan and poly (L-lactic acid-co-ε-caprolactone) bilayer vascular grafts in a canine femoral artery model. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110806.	5.0	18
104	Nonglutaraldehyde treated porcine pericardium with good biocompatibility, reduced calcification and improved Anti-coagulation for bioprosthetic heart valve applications. Chemical Engineering Journal, 2021, 414, 128900.	12.7	18
105	A bioprosthetic heart valve cross-linked by a non-glutaraldehyde reagent with improved biocompatibility, endothelialization, anti-coagulation and anti-calcification properties. Journal of Materials Chemistry B, 2021, 9, 4031-4038.	5.8	18
106	Hierarchical Capillary Coating to Biofunctionlize Drug-Eluting Stent for Improving Endothelium Regeneration. Research, 2020, 2020, 1458090.	5.7	18
107	Nonglutaraldehyde crosslinked bioprosthetic heart valves based on 2-isocyanatoethyl methacrylate crosslinked porcine pericardium with improved properties of stability, cytocompatibility and anti-calcification. Composites Part B: Engineering, 2022, 230, 109504.	12.0	18
108	Scaffold with Micro/Macroâ€Architecture for Myocardial Alignment Engineering into Complex 3D Cell Patterns. Advanced Healthcare Materials, 2019, 8, e1901015.	7.6	17

#	Article	IF	CITATIONS
109	A PEGylation method of fabricating bioprosthetic heart valves based on glutaraldehyde and 2-amino-4-pentenoic acid co-crosslinking with improved antithrombogenicity and cytocompatibility. Acta Biomaterialia, 2022, 144, 279-291.	8.3	17
110	Platelet Adhesion and Activation on Chiral Surfaces: The Influence of Protein Adsorption. Langmuir, 2017, 33, 10402-10410.	3.5	16
111	Improved Antithrombotic Function of Oriented Endothelial Cell Monolayer on Microgrooves. ACS Biomaterials Science and Engineering, 2018, 4, 1976-1985.	5.2	16
112	A two-photon AIE fluorophore as a photosensitizer for highly efficient mitochondria-targeted photodynamic therapy. New Journal of Chemistry, 2020, 44, 9355-9364.	2.8	16
113	pH and singlet oxygen dual-responsive GEM prodrug micelles for efficient combination therapy of chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 5645-5654.	5.8	16
114	Multistep Instead of One-Step: A Versatile and Multifunctional Coating Platform for Biocompatible Corrosion Protection. ACS Biomaterials Science and Engineering, 2019, 5, 6541-6556.	5.2	15
115	Hydrogel hybrid porcine pericardium for the fabrication of a pre-mounted TAVI valve with improved biocompatibility. Journal of Materials Chemistry B, 2019, 7, 1427-1434.	5.8	15
116	Extracellular matrix coating improves the biocompatibility of polymeric heart valves. Journal of Materials Chemistry B, 2020, 8, 10616-10629.	5.8	15
117	Pre-mounted dry TAVI valve with improved endothelialization potential using REDV-loaded PEGMA hydrogel hybrid pericardium. Journal of Materials Chemistry B, 2020, 8, 2689-2701.	5.8	15
118	NT5DC2 promotes leiomyosarcoma tumour cell growth via stabilizing unpalmitoylated TEAD4 and generating a positive feedback loop. Journal of Cellular and Molecular Medicine, 2021, 25, 5976-5987.	3.6	15
119	A Uniform and Robust Bioinspired Zwitterion Coating for Use in Bloodâ€Contacting Catheters with Improved Antiâ€Inflammatory and Antithrombotic Properties. Macromolecular Bioscience, 2021, 21, e2100341.	4.1	15
120	The study of dry biological valve crosslinked with a combination of carbodiimide and polyphenol. International Journal of Energy Production and Management, 2021, 8, rbaa049.	3.7	15
121	Chitosan coated bacteria responsive metal-polyphenol coating as efficient platform for wound healing. Composites Part B: Engineering, 2022, 234, 109665.	12.0	15
122	A strategy of functional crosslinking acellular matrix in blood-contacting implantable devices with recombinant humanized collagen type III (rhCOLIII). Composites Part B: Engineering, 2022, 234, 109667.	12.0	15
123	Hierarchical Responsive Nanoplatform with Two-Photon Aggregation-Induced Emission Imaging for Efficient Cancer Theranostics. ACS Applied Materials & Interfaces, 2019, 11, 47259-47269.	8.0	14
124	Poly (dimethyl diallyl ammonium chloride) incorporated multilayer coating on biodegradable AZ31 magnesium alloy with enhanced resistance to chloride corrosion and promoted endothelialization. Chemical Engineering Journal, 2021, 421, 127724.	12.7	14
125	A transparent hydrophilic anti-biofouling coating for intraocular lens materials prepared by "bridging―of the intermediate adhesive layer. Journal of Materials Chemistry B, 2021, 9, 3696-3704.	5.8	14
126	Nanoparticles-stacked superhydrophilic coating supported synergistic antimicrobial ability for enhanced wound healing. Materials Science and Engineering C, 2022, 132, 112535.	7.3	14

#	Article	IF	CITATIONS
127	Integrated prodrug micelles with two-photon bioimaging and pH-triggered drug delivery for cancer theranostics. International Journal of Energy Production and Management, 2020, 7, 171-180.	3.7	13
128	The biological responses and mechanisms of endothelial cells to magnesium alloy. International Journal of Energy Production and Management, 2021, 8, rbab017.	3.7	13
129	A bifunctional mitochondrial targeting AIE-active fluorescent probe with high sensitivity to hydrogen peroxide and viscosity for fatty liver diagnosis. New Journal of Chemistry, 2021, 45, 12138-12144.	2.8	13
130	A lipid droplet specific fluorescent probe for image-guided photodynamic therapy under hypoxia. Journal of Materials Chemistry B, 2021, 9, 9553-9560.	5.8	13
131	A bioprosthetic heart valve prepared by copolymerization of 2-isocyanatoethyl methacrylate modified pericardium and functional monomer. Composites Part B: Engineering, 2022, 238, 109922.	12.0	13
132	Dressing blood-contacting devices with platelet membrane enables large-scale multifunctional biointerfacing. Matter, 2022, 5, 2334-2351.	10.0	13
133	Elastin Stabilization Through Polyphenol and Ferric Chloride Combined Treatment for the Enhancement of Bioprosthetic Heart Valve Anticalcification. Artificial Organs, 2018, 42, 1062-1069.	1.9	12
134	Tough pNAGA hydrogel hybridized porcine pericardium for the pre-mounted TAVI valve with improved anti-tearing properties and hemocompatibility. Biomedical Materials (Bristol), 2020, 15, 065013.	3.3	12
135	Inorganicâ€polymerization crosslinked tissueâ€siloxane hybrid as potential biomaterial for bioprosthetic heart valves. Journal of Biomedical Materials Research - Part A, 2021, 109, 754-765.	4.0	12
136	Foldable Glistening-Free Acrylic Intraocular Lens Biomaterials with Dual-Side Heterogeneous Surface Modification for Postoperative Endophthalmitis and Posterior Capsule Opacification Prophylaxis. Biomacromolecules, 2021, 22, 3510-3521.	5.4	12
137	ROS and CSH Dualâ€Responsive GEM Prodrug Micelles for ROSâ€Triggered Fluorescence Turn on Bioimaging and Cancer Therapy. Advanced Materials Interfaces, 2020, 7, 2000294.	3.7	12
138	A honokiol-mediated robust coating for blood-contacting devices with anti-inflammatory, antibacterial and antithrombotic properties. Journal of Materials Chemistry B, 2021, 9, 9770-9783.	5.8	12
139	Stability research on polydopamine and immobilized albumin on 316L stainless steel. International Journal of Energy Production and Management, 2016, 3, 277-284.	3.7	11
140	Disassembly of micelle-like polyethylenimine nanocomplexes for siRNA delivery: High transfection efficiency and reduced toxicity achieved by simple reducible lipid modification. Journal of Colloid and Interface Science, 2017, 504, 633-644.	9.4	11
141	A fully absorbable biomimetic polymeric micelle loaded with cisplatin as drug carrier for cancer therapy. International Journal of Energy Production and Management, 2018, 5, 1-8.	3.7	11
142	Multifarious anti-biofouling bioprosthetic heart valve materials with the formation of interpenetrating polymer network structures. Materials and Design, 2021, 206, 109803.	7.0	11
143	A lipid droplets specific probe for imaging of atherosclerosis and fibrocalcific bicuspid aortic valves. Sensors and Actuators B: Chemical, 2021, 346, 130458.	7.8	11
144	Microfibrillated cellulose-enhanced carboxymethyl chitosan/oxidized starch sponge for chronic diabetic wound repair. Materials Science and Engineering C, 2022, 135, 112669.	7.3	11

#	Article	IF	CITATIONS
145	An organic selenium and VEGF-conjugated bioinspired coating promotes vascular healing. Biomaterials, 2022, 287, 121654.	11.4	11
146	A universal anti-thrombotic and antibacterial coating: A chemical approach directed by Fenton reaction and silane coupling. Applied Surface Science, 2022, 600, 154143.	6.1	11
147	Micelles prepared from poly(N-isopropylacrylamide-co-tetraphenylethene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 hydrophilic drug carrier. Journal of Materials Chemistry B, 2018, 6, 7495-7502.) Tf 50 663 5.8	7 Td (acryla 10
148	The tropoelastin and lysyl oxidase treatments increased the content of insoluble elastin in bioprosthetic heart valves. Journal of Biomaterials Applications, 2018, 33, 637-646.	2.4	10
149	Grafting of poly(ethylene oxide) with Schiff's base end group onto chloromethylated polystyrene via Decker-Forster reaction. Macromolecular Rapid Communications, 1998, 19, 247-250.	3.9	9
150	Hyaluronic acid-curcumin conjugate suppresses the fibrotic functions of myofibroblasts from contractive joint by the PTGER2 demethylation. International Journal of Energy Production and Management, 2019, 6, 269-277.	3.7	9
151	Riboflavin photoâ€crossâ€linking method for improving elastin stability and reducing calcification in bioprosthetic heart valves. Xenotransplantation, 2019, 26, e12481.	2.8	9
152	Biodegradable synthetic polymeric composite scaffoldâ€based tissue engineered heart valve with minimally invasive transcatheter implantation. Polymers for Advanced Technologies, 2020, 31, 2422-2432.	3.2	9
153	Biomaterials-assisted exosomes therapy in osteoarthritis. Biomedical Materials (Bristol), 2022, 17, 022001.	3.3	9
154	A novel anti-calcification method for bioprosthetic heart valves using dopamine-modified alginate. Polymer Bulletin, 2019, 76, 1423-1434.	3.3	8
155	A pHâ€Sensitive Phospholipid Polymeric Prodrug Based on Branched Polyethylenimine for Intracellular Drug Delivery. Macromolecular Chemistry and Physics, 2016, 217, 2049-2055.	2.2	7
156	Exogenous hyaluronic acid and chondroitin sulfate crosslinking treatment for increasing the amount and stability of glycosaminoglycans in bioprosthetic heart valves. Journal of Materials Science: Materials in Medicine, 2019, 30, 38.	3.6	7
157	EGCG and enzymatic crossâ€linking combined treatments for improving elastin stability and reducing calcification in bioprosthetic heart valves. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1551-1559.	3.4	7
158	Preclinical study of a self-expanding pulmonary valve for the treatment of pulmonary valve disease. International Journal of Energy Production and Management, 2020, 7, 609-618.	3.7	7
159	The influence of substrate stiffness on osteogenesis of vascular smooth muscle cells. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111388.	5.0	7
160	Visible light–induced crossâ€linking of porcine pericardium for the improvement of endothelialization, antiâ€tearing, and anticalcification properties. Journal of Biomedical Materials Research - Part A, 2022, 110, 31-42.	4.0	7
161	Ag-Incorporated Polydopamine/Tannic Acid Coating on Titanium With Enhanced Cytocompatible and Antibacterial Properties. Frontiers in Bioengineering and Biotechnology, 2022, 10, 877738.	4.1	7
162	Redox-Sensitive Polymeric Micelles Based on Tetraphenylethylene-Conjugated Copolymer for Aggregation-Induced Emission Active Imaging and Drug Delivery. Journal of Biomedical Nanotechnology, 2017, 13, 1480-1489.	1.1	6

#	Article	IF	CITATIONS
163	Yes-associated protein contributes to magnesium alloy-derivedinflammation in endothelial cells. International Journal of Energy Production and Management, 2022, 9, rbac002.	3.7	6
164	Arsenic trioxide activates yes-associated protein by lysophosphatidic acid metabolism to selectively induce apoptosis of vascular smooth muscle cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119211.	4.1	6
165	Advances on the modification and biomedical applications of acellular dermal matrices. Journal of Leather Science and Engineering, 2022, 4, .	6.0	6
166	A bioprosthetic heart valve material prepared by copolymerization of 2-Amino-4-pentanoic acid modified pericardium and N, N-Dimethylacrylamide. Composites Part B: Engineering, 2022, 243, 110120.	12.0	6
167	Highly specific probe for dual-emissive mitochondrial imaging based on a photostable and aqueous-soluble phosphonium fluorophore. RSC Advances, 2016, 6, 94085-94091.	3.6	5
168	Multifunctional mussel-inspired copolymerized epigallocatechin gallate (EGCG)/arginine coating: the potential as an ad-layer for vascular materials. International Journal of Energy Production and Management, 2016, 3, 247-255.	3.7	5
169	Cation–anion interaction-directed formation of functional vesicles and their biological application for nucleus-specific imaging. New Journal of Chemistry, 2018, 42, 9187-9192.	2.8	5
170	Synthesis of Poly(<i>N</i> â€isopropylacrylamide)â€ <i>Block</i> â€Poly(<i>tert</i> â€Butyl Methacrylate) Block Copolymer by Visible Light–Induced Metalâ€Free Atom Transfer Polymerization. Macromolecular Chemistry and Physics, 2018, 219, 1800192.	2.2	5
171	A two-photon fluorophore labeled multi-functional drug carrier for targeting cancer therapy, inflammation restraint and AIE active bioimaging. Journal of Materials Chemistry B, 2019, 7, 3894-3908.	5.8	5
172	An ultralow dose paclitaxel coated drug balloon with an outer protective sheath for peripheral arterial disease treatment. Journal of Materials Chemistry B, 2021, 9, 2428-2435.	5.8	5
173	Crosslinking porcine aortic valve by radical polymerization for the preparation of BHVs with improved cytocompatibility, mild immune response, and reduced calcification. Journal of Biomaterials Applications, 2021, 35, 1218-1232.	2.4	5
174	Micelle-embedded coating with ebselen for nitric oxide generation. Medical Gas Research, 2019, 9, 176.	2.3	5
175	Arginine-grafted porcine pericardium by copolymerization to improve the cytocompatibility, hemocompatibility and anti-calcification properties of bioprosthetic heart valve materials. Journal of Materials Chemistry B, 2022, 10, 5571-5581.	5.8	5
176	Nanostructured Multilayer Films Assembled from Poly(dopamine) oated Carbon Nanotubes for Controlling Cell Behavior. ChemNanoMat, 2017, 3, 319-327.	2.8	4
177	Bioprosthetic heart valves' structural integrity improvement through exogenous amino donor treatments. Journal of Materials Research, 2018, 33, 2576-2585.	2.6	4
178	Enzyme-oxidative-polymerization method for improving glycosaminoglycans stability and reducing calcification in bioprosthetic heart valves. Biomedical Materials (Bristol), 2019, 14, 025012.	3.3	4
179	PEGylated chitosan and PEGylated PLCL for blood vessel repair: An in vitro study. Journal of Biomaterials Applications, 2020, 34, 778-789.	2.4	4
180	A combination of hydrogen bonding and chemical covalent crosslinking to fabricate a novel swim-bladder-derived dry heart valve material yields advantageous mechanical and biological properties. Biomedical Materials (Bristol), 2021, 16, 015014.	3.3	4

#	Article	IF	CITATIONS
181	Research and Progress of Implantable Cardiovascular Materials and Devices. Engineering, 2021, 7, 1707-1709.	6.7	4
182	The application of antitumor drug-targeting models on liver cancer. Drug Delivery, 2016, 23, 1667-1675.	5.7	3
183	<i>In vitro</i> and <i>in vivo</i> assessment of nanostructured porous biphasic calcium phosphate ceramics for promoting osteogenesis in an osteoporotic environment. RSC Advances, 2018, 8, 14646-14653.	3.6	3
184	A hydrophobic antifouling surface coating on bioprosthetic heart valves for enhanced antithrombogenicity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1082-1092.	3.4	3
185	Mussel-inspired bioactive 3D-printable poly(styrene-butadiene-styrene) and the <i>in vitro</i> assessment of its potential as cranioplasty implants. Journal of Materials Chemistry B, 2022, 10, 3747-3758.	5.8	3
186	Incorporation of Mg-phenolic networks as a protective coating for magnesium alloy to enhance corrosion resistance and osteogenesis in vivo. Journal of Magnesium and Alloys, 2023, 11, 4247-4262.	11.9	3
187	Hyaluronic Acid-Grafted Bioprosthetic Heart Valves Achieved by Copolymerization Exhibited Improved Anticalcification and Antithrombogenicity. ACS Biomaterials Science and Engineering, 2022, 8, 3399-3410.	5.2	3
188	Tissue Engineering: Scaffold with Micro/Macroâ€Architecture for Myocardial Alignment Engineering into Complex 3D Cell Patterns (Adv. Healthcare Mater. 22/2019). Advanced Healthcare Materials, 2019, 8, 1970087.	7.6	2
189	Photopolymerized poly(l-lactide-b-N-vinyl-2-pyrrolidone) network resists cell adhesion in situ. RSC Advances, 2021, 11, 20997-21005.	3.6	2
190	Comparison of Biomimetic Block Copolymer Micelles as Drug Carriers for Cancer Therapy. Journal of Biomedical Nanotechnology, 2017, 13, 1500-1511.	1.1	2
191	Glycidyl methacrylate-crosslinked fish swim bladder as a novel cardiovascular biomaterial with improved antithrombotic and anticalcification properties. Journal of Biomaterials Applications, 2022, 36, 1188-1200.	2.4	2
192	Preparation and characterization of photopolymerized poly(<scp>l</scp> -lactide- <i>co</i> -ε-caprolactone- <i>co-N</i> -vinyl-2-pyrrolidone) network as anti-biofouling materials. RSC Advances, 2022, 12, 8708-8718.	3.6	1
193	Nanomaterials augmented LDI-TOF-MS for pancreatic ductal adenocarcinoma diagnosis and classification Journal of Clinical Oncology, 2020, 38, e16761-e16761.	1.6	0