
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3550294/publications.pdf Version: 2024-02-01

VAO ZHENC

#	Article	IF	CITATIONS
1	Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44, 2060-2086.	18.7	4,323
2	Hydrogen evolution by a metal-free electrocatalyst. Nature Communications, 2014, 5, 3783.	5.8	1,851
3	Advancing the Electrochemistry of the Hydrogenâ€Evolution Reaction through Combining Experiment and Theory. Angewandte Chemie - International Edition, 2015, 54, 52-65.	7.2	1,616
4	Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy and Environmental Science, 2012, 5, 6717.	15.6	1,552
5	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
6	Molecule-Level g-C ₃ N ₄ Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. Journal of the American Chemical Society, 2017, 139, 3336-3339.	6.6	1,094
7	The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. Angewandte Chemie - International Edition, 2018, 57, 7568-7579.	7.2	1,018
8	Nanoporous Graphitic-C ₃ N ₄ @Carbon Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2011, 133, 20116-20119.	6.6	958
9	Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution. ACS Nano, 2014, 8, 5290-5296.	7.3	947
10	Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts: A Roadmap to Achieve the Best Performance. Journal of the American Chemical Society, 2014, 136, 4394-4403.	6.6	946
11	Activity origin and catalyst design principles forÂelectrocatalytic hydrogen evolution on heteroatom-dopedÂgraphene. Nature Energy, 2016, 1, .	19.8	927
12	Twoâ€Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. Angewandte Chemie - International Edition, 2013, 52, 3110-3116.	7.2	863
13	High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. Journal of the American Chemical Society, 2016, 138, 16174-16181.	6.6	852
14	Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Accounts of Chemical Research, 2017, 50, 915-923.	7.6	824
15	Understanding the Roadmap for Electrochemical Reduction of CO ₂ to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. Journal of the American Chemical Society, 2019, 141, 7646-7659.	6.6	711
16	Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts. Journal of the American Chemical Society, 2019, 141, 9664-9672.	6.6	642
17	Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy, 2016, 19, 373-381.	8.2	597
18	Facile Oxygen Reduction on a Threeâ€Ðimensionally Ordered Macroporous Graphitic C ₃ N ₄ /Carbon Composite Electrocatalyst. Angewandte Chemie - International Edition, 2012, 51, 3892-3896.	7.2	588

#	Article	IF	CITATIONS
19	Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction. CheM, 2018, 4, 1809-1831.	5.8	587
20	Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nature Communications, 2016, 7, 12876.	5.8	568
21	Nanostructured Metalâ€Free Electrochemical Catalysts for Highly Efficient Oxygen Reduction. Small, 2012, 8, 3550-3566.	5.2	559
22	Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-Doped Multilayer Graphene. ACS Nano, 2014, 8, 6856-6862.	7.3	519
23	Determination of the Electron Transfer Number for the Oxygen Reduction Reaction: From Theory to Experiment. ACS Catalysis, 2016, 6, 4720-4728.	5.5	513
24	Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electrocatalytic Nitrogen Reduction. ACS Catalysis, 2019, 9, 2902-2908.	5.5	467
25	Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres. Journal of the American Chemical Society, 2021, 143, 7819-7827.	6.6	463
26	Transitionâ€Metalâ€Doped RuIr Bifunctional Nanocrystals for Overall Water Splitting in Acidic Environments. Advanced Materials, 2019, 31, e1900510.	11.1	449
27	Molecular Scaffolding Strategy with Synergistic Active Centers To Facilitate Electrocatalytic CO ₂ Reduction to Hydrocarbon/Alcohol. Journal of the American Chemical Society, 2017, 139, 18093-18100.	6.6	439
28	Nitrogen Vacancies on 2D Layered W ₂ N ₃ : A Stable and Efficient Active Site for Nitrogen Reduction Reaction. Advanced Materials, 2019, 31, e1902709.	11.1	387
29	Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8, 1509.	5.8	361
30	Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. ACS Nano, 2017, 11, 7293-7300.	7.3	357
31	Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media. CheM, 2019, 5, 445-459.	5.8	354
32	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie - International Edition, 2021, 60, 19572-19590.	7.2	341
33	Carbon Solving Carbon's Problems: Recent Progress of Nanostructured Carbonâ€Based Catalysts for the Electrochemical Reduction of CO ₂ . Advanced Energy Materials, 2017, 7, 1700759.	10.2	327
34	Heteroatom-Doped Transition Metal Electrocatalysts for Hydrogen Evolution Reaction. ACS Energy Letters, 2019, 4, 805-810.	8.8	323
35	Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions. ACS Catalysis, 2018, 8, 6707-6732.	5.5	320
36	Polydopamineâ€Inspired, Dual Heteroatomâ€Doped Carbon Nanotubes for Highly Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1602068.	10.2	319

#	Article	IF	CITATIONS
37	Single-Crystal Nitrogen-Rich Two-Dimensional Mo ₅ N ₆ Nanosheets for Efficient and Stable Seawater Splitting. ACS Nano, 2018, 12, 12761-12769.	7.3	317
38	Engineering Highâ€Energy Interfacial Structures for Highâ€Performance Oxygenâ€Involving Electrocatalysis. Angewandte Chemie - International Edition, 2017, 56, 8539-8543.	7.2	314
39	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Materials Today, 2020, 36, 125-138.	8.3	308
40	Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nature Energy, 2021, 6, 904-912.	19.8	305
41	Recent Advances in Atomic Metal Doping of Carbonâ€based Nanomaterials for Energy Conversion. Small, 2017, 13, 1700191.	5.2	290
42	Short-Range Ordered Iridium Single Atoms Integrated into Cobalt Oxide Spinel Structure for Highly Efficient Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 5201-5211.	6.6	287
43	Charge State Manipulation of Cobalt Selenide Catalyst for Overall Seawater Electrolysis. Advanced Energy Materials, 2018, 8, 1801926.	10.2	264
44	Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolicâ€Nitrogenâ€Carbon. Advanced Energy Materials, 2020, 10, 2000789.	10.2	247
45	Engineering of Carbonâ€Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality. Advanced Materials, 2015, 27, 5372-5378.	11.1	246
46	Mesoporous hybrid material composed of Mn ₃ O ₄ nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. Chemical Communications, 2013, 49, 7705-7707.	2.2	241
47	Electronic and Structural Engineering of Carbonâ€Based Metalâ€Free Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1803625.	11.1	229
48	Mesoporous MnCo ₂ O ₄ with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. Journal of Materials Chemistry A, 2014, 2, 8676-8682.	5.2	227
49	Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nature Communications, 2019, 10, 4876.	5.8	220
50	Regulating Electrocatalysts via Surface and Interface Engineering for Acidic Water Electrooxidation. ACS Energy Letters, 2019, 4, 2719-2730.	8.8	218
51	NiO as a Bifunctional Promoter for RuO ₂ toward Superior Overall Water Splitting. Small, 2018, 14, e1704073.	5.2	214
52	Efficient Nitrogen Fixation to Ammonia through Integration of Plasma Oxidation with Electrocatalytic Reduction. Angewandte Chemie - International Edition, 2021, 60, 14131-14137.	7.2	190
53	Stabilizing Cu ²⁺ lons by Solid Solutions to Promote CO ₂ Electroreduction to Methane. Journal of the American Chemical Society, 2022, 144, 2079-2084.	6.6	188
54	Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. ACS Energy Letters, 2018, 3, 1198-1204.	8.8	183

#	Article	IF	CITATIONS
55	Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution. Nano Energy, 2018, 53, 690-697.	8.2	175
56	Selectivity Control for Electrochemical CO ₂ Reduction by Charge Redistribution on the Surface of Copper Alloys. ACS Catalysis, 2019, 9, 9411-9417.	5.5	172
57	Engineering 2D Metal–Organic Framework/MoS ₂ Interface for Enhanced Alkaline Hydrogen Evolution. Small, 2019, 15, e1805511.	5.2	169
58	Electrochemical Nitrogen Reduction: Identification and Elimination of Contamination in Electrolyte. ACS Energy Letters, 2019, 4, 2111-2116.	8.8	167
59	Molten Salt-Directed Catalytic Synthesis of 2D Layered Transition-Metal Nitrides for Efficient Hydrogen Evolution. CheM, 2020, 6, 2382-2394.	5.8	163
60	Isolated Boron Sites for Electroreduction of Dinitrogen to Ammonia. ACS Catalysis, 2020, 10, 1847-1854.	5.5	161
61	A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-Î [^] perovskite oxide as both the anode and cathode. Acta Materialia, 2009, 57, 1165-1175.	3.8	158
62	Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling. Nature Communications, 2022, 13, .	5.8	158
63	Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3â~δas a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell. Journal of Power Sources, 2008, 180, 15-22.	4.0	156
64	Intermediate Modulation on Noble Metal Hybridized to 2D Metal-Organic Framework for Accelerated Water Electrocatalysis. CheM, 2019, 5, 2429-2441.	5.8	150
65	The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbonâ€Based Catalysts for Electrocatalytic Nitrogen Reduction. Angewandte Chemie - International Edition, 2020, 59, 4525-4531.	7.2	149
66	Metal-metal interactions in correlated single-atom catalysts. Science Advances, 2022, 8, eabo0762.	4.7	142
67	A computational study on Pt and Ru dimers supported on graphene for the hydrogen evolution reaction: new insight into the alkaline mechanism. Journal of Materials Chemistry A, 2019, 7, 3648-3654.	5.2	134
68	A 2D metal–organic framework/Ni(OH) ₂ heterostructure for an enhanced oxygen evolution reaction. Nanoscale, 2019, 11, 3599-3605.	2.8	131
69	Facile Fabrication of Core–Shellâ€&tructured Ag@Carbon and Mesoporous Yolk–Shellâ€&tructured Ag@Carbon@Silica by an Extended Stöber Method. Chemistry - A European Journal, 2013, 19, 6942-6945.	1.7	122
70	Electrochemical Reduction of CO ₂ to Ethane through Stabilization of an Ethoxy Intermediate. Angewandte Chemie - International Edition, 2020, 59, 19649-19653.	7.2	122
71	Identification of pH-dependent synergy on Ru/MoS ₂ interface: a comparison of alkaline and acidic hydrogen evolution. Nanoscale, 2017, 9, 16616-16621.	2.8	120
72	Selectivity roadmap for electrochemical CO2 reduction on copper-based alloy catalysts. Nano Energy, 2020, 71, 104601.	8.2	116

#	Article	IF	CITATIONS
73	Significant Enhancement of Water Splitting Activity of N arbon Electrocatalyst by Trace Level Co Doping. Small, 2016, 12, 3703-3711.	5.2	111
74	Free-standing single-crystalline NiFe-hydroxide nanoflake arrays: a self-activated and robust electrocatalyst for oxygen evolution. Chemical Communications, 2018, 54, 463-466.	2.2	107
75	Enhanced electrochemical catalytic activity by copper oxide grown on nitrogen-doped reduced graphene oxide. Journal of Materials Chemistry A, 2013, 1, 13179.	5.2	105
76	Polydopamine–graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. Nanoscale, 2015, 7, 12598-12605.	2.8	104
77	Polydopamine-inspired nanomaterials for energy conversion and storage. Journal of Materials Chemistry A, 2018, 6, 21827-21846.	5.2	103
78	Molecular Scalpel to Chemically Cleave Metal–Organic Frameworks for Induced Phase Transition. Journal of the American Chemical Society, 2021, 143, 6681-6690.	6.6	103
79	Highly Selective Twoâ€Electron Electrocatalytic CO ₂ Reduction on Singleâ€Atom Cu Catalysts. Small Structures, 2021, 2, 2000058.	6.9	93
80	Die Wasserstoffentwicklungsreaktion in alkalischer Lösung: Von der Theorie und Einkristallmodellen zu praktischen Elektrokatalysatoren. Angewandte Chemie, 2018, 130, 7690-7702.	1.6	78
81	Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis. ACS Applied Materials & Interfaces, 2015, 7, 14446-14455.	4.0	75
82	Role of oxygen-bound reaction intermediates in selective electrochemical CO ₂ reduction. Energy and Environmental Science, 2021, 14, 3912-3930.	15.6	74
83	Molecular Cleavage of Metalâ€Organic Frameworks and Application to Energy Storage and Conversion. Advanced Materials, 2021, 33, e2104341.	11.1	73
84	Impact of Interfacial Electron Transfer on Electrochemical CO ₂ Reduction on Graphitic Carbon Nitride/Doped Graphene. Small, 2019, 15, e1804224.	5.2	69
85	Ionic liquid-assisted synthesis of N/S-double doped graphene microwires for oxygen evolution and Zn–air batteries. Energy Storage Materials, 2015, 1, 17-24.	9.5	67
86	Electrocatalytically Switchable CO ₂ Capture: First Principle Computational Exploration of Carbon Nanotubes with Pyridinic Nitrogen. ChemSusChem, 2014, 7, 435-441.	3.6	62
87	Syngas production from electrocatalytic CO ₂ reduction with high energetic efficiency and current density. Journal of Materials Chemistry A, 2019, 7, 7675-7682.	5.2	62
88	Controlled synthesis of ultrasmall RuP2 particles on N,P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution. Rare Metals, 2021, 40, 1040-1047.	3.6	59
89	Softâ€Templating Synthesis of <i>N</i> â€Doped Mesoporous Carbon Nanospheres for Enhanced Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2015, 10, 1546-1553.	1.7	57
90	Metal-organic framework assisted synthesis of single-atom catalysts for energy applications. National Science Review, 2018, 5, 626-627.	4.6	57

#	Article	IF	CITATIONS
91	Highly active nickel–cobalt/nanocarbon thin films as efficient water splitting electrodes. Nanoscale, 2016, 8, 18507-18515.	2.8	56
92	A simple strategy for tridoped porous carbon nanosheet as superior electrocatalyst for bifunctional oxygen reduction and hydrogen evolution reactions. Carbon, 2020, 162, 586-594.	5.4	55
93	Co (II) Boron Imidazolate Framework with Rigid Auxiliary Linkers for Stable Electrocatalytic Oxygen Evolution Reaction. Advanced Science, 2019, 6, 1801920.	5.6	46
94	Synthesis and assessment of La0.8Sr0.2ScyMn1â^'yO3â^'Î′ as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte. Journal of Power Sources, 2008, 183, 471-478.	4.0	44
95	A boron imidazolate framework with mechanochromic and electrocatalytic properties. Materials Horizons, 2018, 5, 1151-1155.	6.4	44
96	Efficient Nitrogen Fixation to Ammonia through Integration of Plasma Oxidation with Electrocatalytic Reduction. Angewandte Chemie, 2021, 133, 14250-14256.	1.6	44
97	Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel. Journal of Power Sources, 2010, 195, 1333-1343.	4.0	43
98	Bronze alloys with tin surface sites for selective electrochemical reduction of CO ₂ . Chemical Communications, 2018, 54, 13965-13968.	2.2	43
99	Mesoscale Diffusion Enhancement of Carbon-Bowl-Shaped Nanoreactor toward High-Performance Electrochemical H ₂ O ₂ Production. ACS Applied Materials & Interfaces, 2021, 13, 39763-39771.	4.0	41
100	Recent Progress of 3d Transition Metal Singleâ€Atom Catalysts for Electrochemical CO ₂ Reduction. Advanced Materials Interfaces, 2021, 8, 2001904.	1.9	40
101	Engineering Highâ€Energy Interfacial Structures for Highâ€Performance Oxygenâ€Involving Electrocatalysis. Angewandte Chemie, 2017, 129, 8659-8663.	1.6	36
102	Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO+SDC anode and BSCF+SDC cathode. Journal of Power Sources, 2008, 179, 640-648.	4.0	35
103	Robust Ru-N metal-support interaction to promote self-powered H2 production assisted by hydrazine oxidation. Nano Energy, 2022, 100, 107467.	8.2	35
104	A Threeâ€Component Nanocomposite with Synergistic Reactivity for Oxygen Reduction Reaction in Alkaline Solution. Advanced Energy Materials, 2015, 5, 1401186.	10.2	34
105	Electrochemical Reduction of CO ₂ to Ethane through Stabilization of an Ethoxy Intermediate. Angewandte Chemie, 2020, 132, 19817-19821.	1.6	33
106	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie, 2021, 133, 19724-19742.	1.6	30
107	Natural DNA-assisted ultrafine FeP embedded in N, P-codoped carbons for efficient oxygen reduction, hydrogen evolution and rechargeable zinc-air battery. Carbon, 2022, 186, 171-179.	5.4	28
108	Pulsed laser deposition of porous N-carbon supported cobalt (oxide) thin films for highly efficient oxygen evolution. Chemical Communications, 2016, 52, 11947-11950.	2.2	27

#	Article	IF	CITATIONS
109	Customizing the microenvironment of CO ₂ electrocatalysis via threeâ€phase interface engineering. SmartMat, 2022, 3, 111-129.	6.4	27
110	A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methane–air mixture. Journal of Power Sources, 2009, 191, 225-232.	4.0	26
111	Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
112	Mesoporous Co–O–C nanosheets for electrochemical production of hydrogen peroxide in acidic medium. Journal of Materials Chemistry A, 2022, 10, 4068-4075.	5.2	26
113	Controlling the Cation Exsolution of Perovskite to Customize Heterostructure Active Site for Oxygen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2022, 14, 25638-25647.	4.0	26
114	Directing the selectivity of CO ₂ electroreduction to target C ₂ products <i>via</i> non-metal doping on Cu surfaces. Journal of Materials Chemistry A, 2021, 9, 6345-6351.	5.2	25
115	C ₃ production from CO ₂ reduction by concerted *CO trimerization on a single-atom alloy catalyst. Journal of Materials Chemistry A, 2022, 10, 5998-6006.	5.2	25
116	Direct Growth of Well-Aligned MOF Arrays onto Various Substrates. CheM, 2017, 2, 751-752.	5.8	24
117	Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of multiple intermediates. Journal of Materials Chemistry A, 2019, 7, 13635-13640.	5.2	24
118	Graphene-encapsulated nickel–copper bimetallic nanoparticle catalysts for electrochemical reduction of CO ₂ to CO. Chemical Communications, 2020, 56, 11275-11278.	2.2	23
119	Oxidation Stability of Nanographite Materials. Advanced Energy Materials, 2013, 3, 1176-1179.	10.2	22
120	Spatial-confinement induced electroreduction of CO and CO ₂ to diols on densely-arrayed Cu nanopyramids. Chemical Science, 2021, 12, 8079-8087.	3.7	22
121	Natural DNA-derived highly-graphitic N, P, S-tridoped carbon nanosheets for multiple electrocatalytic applications. Chemical Engineering Journal, 2022, 429, 132102.	6.6	22
122	Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N-C framework for CO ₂ electroreduction. Nanoscale Horizons, 2019, 4, 1411-1415.	4.1	21
123	Key to C ₂ production: selective C–C coupling for electrochemical CO ₂ reduction on copper alloy surfaces. Chemical Communications, 2021, 57, 9526-9529.	2.2	20
124	Polydopamineâ€Derived, In Situ Nâ€Doped 3D Mesoporous Carbons for Highly Efficient Oxygen Reduction. ChemNanoMat, 2018, 4, 417-422.	1.5	19
125	Cr doping effect in B-site of La0.75Sr0.25MnO3 on its phase stability and performance as an SOFC anode. Rare Metals, 2009, 28, 361-366.	3.6	18
126	N-doping goes sp-hybridized. Nature Chemistry, 2018, 10, 900-902.	6.6	17

#	Article	IF	CITATIONS
127	Activation and Deactivation Kinetics of Oxygen Reduction over a La0.8Sr0.2Sc0.1Mn0.9O3 Cathode. Journal of Physical Chemistry C, 2008, 112, 18690-18700.	1.5	15
128	Characterization and optimization of La0.8Sr0.2Sc0.1Mn0.9O3â^-based composite electrodes for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2008, 185, 641-648.	4.0	13
129	Well-crystallized mesoporous samaria-doped ceria from EDTA-citrate complexing process with in situ created NiO as recyclable template. Journal of Alloys and Compounds, 2010, 491, 271-277.	2.8	13
130	A nano-engineered graphene/carbon nitride hybrid for photocatalytic hydrogen evolution. Journal of Energy Chemistry, 2016, 25, 225-227.	7.1	12
131	The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbonâ€Based Catalysts for Electrocatalytic Nitrogen Reduction. Angewandte Chemie, 2020, 132, 4555-4561.	1.6	8
132	Study on oxygen activation and methane oxidation over La0.8Sr0.2MnO3 electrode in single-chamber solid oxide fuel cells via an electrochemical approach. International Journal of Hydrogen Energy, 2012, 37, 4328-4338.	3.8	4
133	Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie, 0, , .	1.6	4
134	Carbene Ligands Enabled C–N Coupling for Methylamine Electrosynthesis: A Computational Study. Energy & Fuels, 2022, 36, 7213-7218.	2.5	4
135	An organic-inorganic hybrid strategy to fabricate highly dispersed Fe2C in porous N-Doped carbon for oxygen reduction reaction and rechargeable zinc-air battery. Carbon, 2022, 195, 123-130.	5.4	3
136	Innentitelbild: Electrochemical Reduction of CO ₂ to Ethane through Stabilization of an Ethoxy Intermediate (Angew. Chem. 44/2020). Angewandte Chemie, 2020, 132, 19530-19530.	1.6	0