Tara F Kahan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/35498/publications.pdf Version: 2024-02-01

ΤΛΟΛ ΕΚΛΗΛΝ

#	Article	IF	CITATIONS
1	Spatiotemporal characterization of irradiance and photolysis rate constants of indoor gasâ€phase species in the UTest house during HOMEChem. Indoor Air, 2022, 32, .	4.3	11
2	Direct Observation of Anthracene Clusters at Ice Surfaces. Journal of the American Chemical Society, 2022, 144, 751-756.	13.7	7
3	A modeling study of the impact of photolysis on indoor air quality. Indoor Air, 2022, 32, .	4.3	7
4	Spatial and temporal scales of variability for indoor air constituents. Communications Chemistry, 2021, 4, .	4.5	26
5	Chemical Morphology Controls Reactivity of OH Radicals at the Air–Ice Interface. Journal of Physical Chemistry A, 2021, 125, 8925-8932.	2.5	2
6	lt's Different at the Top: Air–Ice Interface Chemistry in the Cryosphere. , 2021, , 259-290.		0
7	Factors affecting wavelengthâ€resolved ultraviolet irradiance indoors and their impacts on indoor photochemistry. Indoor Air, 2021, 31, 1187-1198.	4.3	10
8	Hydrogen Peroxide Emission and Fate Indoors during Non-bleach Cleaning: A Chamber and Modeling Study. Environmental Science & Technology, 2020, 54, 15643-15651.	10.0	19
9	Physical and Chemical Characterization of Urban Grime Sampled from Two Cities. ACS Earth and Space Chemistry, 2020, 4, 1813-1822.	2.7	14
10	Photolysisâ€driven indoor air chemistry following cleaning of hospital wards. Indoor Air, 2020, 30, 1241-1255.	4.3	17
11	Multiphase Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during Bleach Cleaning. Environmental Science & Technology, 2020, 54, 1730-1739.	10.0	87
12	Physical Characterization of Frozen Aqueous Solutions Containing Sodium Chloride and Humic Acid at Environmentally Relevant Temperatures. ACS Earth and Space Chemistry, 2020, 4, 305-310.	2.7	4
13	Role of location, season, occupant activity, and chemistry in indoor ozone and nitrogen oxide mixing ratios. Environmental Sciences: Processes and Impacts, 2019, 21, 1374-1383.	3.5	21
14	Overview of HOMEChem: House Observations of Microbial and Environmental Chemistry. Environmental Sciences: Processes and Impacts, 2019, 21, 1280-1300.	3.5	140
15	A model for interpreting depth profiles of confocal Raman measurements in reflective and transmitting materials. Journal of Raman Spectroscopy, 2019, 50, 1763-1776.	2.5	3
16	Anthracene and Pyrene Photooxidation Kinetics in Saltwater Environments. ACS Earth and Space Chemistry, 2019, 3, 2695-2703.	2.7	11
17	Emerging investigator series: spatial distribution of dissolved organic matter in ice and at air–ice interfaces. Environmental Sciences: Processes and Impacts, 2019, 21, 1076-1084.	3.5	6
18	Illuminating the dark side of indoor oxidants. Environmental Sciences: Processes and Impacts, 2019, 21, 1229-1239.	3.5	47

Tara F Kahan

#	Article	IF	CITATIONS
19	Formation and emission of hydrogen chloride in indoor air. Indoor Air, 2019, 29, 70-78.	4.3	30
20	Photochemistry in Model Aqueous-Organic Atmospheric Condensed Phases. ACS Symposium Series, 2018, , 87-103.	0.5	3
21	Time-Resolved Measurements of Nitric Oxide, Nitrogen Dioxide, and Nitrous Acid in an Occupied New York Home. Environmental Science & Technology, 2018, 52, 8355-8364.	10.0	72
22	Physical Characterization of Frozen Saltwater Solutions Using Raman Microscopy. ACS Earth and Space Chemistry, 2018, 2, 702-710.	2.7	17
23	Effects of Chromophoric Dissolved Organic Matter on Anthracene Photolysis Kinetics in Aqueous Solution and Ice. Journal of Physical Chemistry A, 2017, 121, 7619-7626.	2.5	22
24	Wavelength-Resolved Photon Fluxes of Indoor Light Sources: Implications for HO _{<i>x</i>} Production. Environmental Science & Technology, 2017, 51, 10423-10430.	10.0	71
25	Hydroxyl radical formation from bacteria-assisted Fenton chemistry at neutral pH under environmentally relevant conditions. Environmental Chemistry, 2016, 13, 757.	1.5	10
26	Photolysis Kinetics of Toluene, Ethylbenzene, and Xylenes at Ice Surfaces. Journal of Physical Chemistry A, 2016, 120, 6693-6697.	2.5	13
27	Optical Autocatalysis Establishes Novel Spatial Dynamics in Phase Separation of Polymer Blends during Photocuring. ACS Macro Letters, 2016, 5, 1237-1241.	4.8	17
28	Tunable Nonlinear Optical Pattern Formation and Microstructure in Cross-Linking Acrylate Systems during Free-Radical Polymerization. Journal of Physical Chemistry C, 2016, 120, 4517-4528.	3.1	24
29	Anthracene and pyrene photolysis kinetics in aqueous, organic, and mixed aqueous-organic phases. Atmospheric Environment, 2016, 128, 158-164.	4.1	27
30	Reply to "Comment on â€~Photolysis of Polycyclic Aromatic Hydrocarbons on Water and Ice Surfaces' and on â€~Nonchromophoric Organic Matter Suppresses Polycyclic Aromatic Hydrocarbon Photolysis in Ice and at Ice Surfaces'― Journal of Physical Chemistry A, 2015, 119, 10764-10765.	2.5	1
31	A Pinch of Salt Is All It Takes: Chemistry at the Frozen Water Surface. Accounts of Chemical Research, 2014, 47, 1587-1594.	15.6	38
32	Nonchromophoric Organic Matter Suppresses Polycyclic Aromatic Hydrocarbon Photolysis in Ice and at Ice Surfaces. Journal of Physical Chemistry A, 2014, 118, 1638-1643.	2.5	23
33	A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. Atmospheric Chemistry and Physics, 2014, 14, 1587-1633.	4.9	235
34	Acetic acid formation via the hydration of gas-phase ketene under ambient conditions. Chemical Physics Letters, 2013, 565, 1-4.	2.6	27
35	Organics in environmental ices: sources, chemistry, and impacts. Atmospheric Chemistry and Physics, 2012, 12, 9653-9678.	4.9	110
36	Cavity-Enhanced Measurements of Hydrogen Peroxide Absorption Cross Sections from 353 to 410 nm. Journal of Physical Chemistry A, 2012, 116, 5941-5947.	2.5	34

Tara F Kahan

#	Article	IF	CITATIONS
37	Absolute ozone absorption cross section in the Huggins Chappuis minimum (350–470 nm) at 296 K. Atmospheric Chemistry and Physics, 2011, 11, 11581-11590.	4.9	38
38	Different photolysis kinetics at the surface of frozen freshwater vs. frozen salt solutions. Atmospheric Chemistry and Physics, 2010, 10, 10917-10922.	4.9	35
39	Hydroxyl radical reactivity at the air-ice interface. Atmospheric Chemistry and Physics, 2010, 10, 843-854.	4.9	45
40	Benzene Photolysis on Ice: Implications for the Fate of Organic Contaminants in the Winter. Environmental Science & Technology, 2010, 44, 3819-3824.	10.0	65
41	Anthracene Photolysis in Aqueous Solution and Ice: Photon Flux Dependence and Comparison of Kinetics in Bulk Ice and at the Airâ ⁻ 'Ice Interface. Environmental Science & Technology, 2010, 44, 1302-1306.	10.0	52
42	Spectroscopic studies of the heterogeneous reaction between O ₃ (g) and halides at the surface of frozen salt solutions. Journal of Geophysical Research, 2010, 115, .	3.3	29
43	Mechanism of Aqueous-Phase Ozonation of S(IV). Journal of Physical Chemistry A, 2010, 114, 2164-2170.	2.5	6
44	Self-Association of Naphthalene at the Airâ^'Ice Interface. Journal of Physical Chemistry A, 2009, 113, 7353-7359.	2.5	42
45	Atmospheric Chemistry of Urban Surface Films. ACS Symposium Series, 2009, , 79-89.	0.5	13
46	Heterogeneous ozonation kinetics of phenanthrene at the air–ice interface. Environmental Research Letters, 2008, 3, 045006.	5.2	36
47	Spectroscopic Probes of the Quasi-Liquid Layer on Ice. Journal of Physical Chemistry A, 2007, 111, 11006-11012.	2.5	101
48	Photolysis of Polycyclic Aromatic Hydrocarbons on Water and Ice Surfaces. Journal of Physical Chemistry A, 2007, 111, 1277-1285.	2.5	120
49	Photochromism of spirooxazines with elements of lipid complementarity in solution and liposomes. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 224-231.	3.9	9