Steve A Fotios

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3549796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 2011, 43, 1732-1739.	3.1	211
2	Road lighting research for drivers and pedestrians: The basis of luminance and illuminance recommendations. Lighting Research and Technology, 2018, 50, 154-186.	1.2	91
3	Road lighting and energy saving. Lighting Research and Technology, 2009, 41, 245-260.	1.2	72
4	Using eye-tracking to identify pedestrians' critical visual tasks, Part 1. Dual task approach. Lighting Research and Technology, 2015, 47, 133-148.	1.2	71
5	Road lighting and pedestrian reassurance after dark: A review. Lighting Research and Technology, 2015, 47, 449-469.	1.2	67
6	A Revised Kruithof Graph Based on Empirical Data. LEUKOS - Journal of Illuminating Engineering Society of North America, 2017, 13, 3-17.	1.5	65
7	Lamp colour properties and apparent brightness: a review. Lighting Research and Technology, 2001, 33, 163-178.	1.2	62
8	Perception of electric light sources of different colour properties. Lighting Research and Technology, 1997, 29, 161-171.	1.2	58
9	Eye Movement and Pupil Size Constriction Under Discomfort Glare. Investigative Ophthalmology and Visual Science, 2015, 56, 1649-1656.	3.3	51
10	Using eye-tracking to identify pedestrians' critical visual tasks. Part 2. Fixation on pedestrians. Lighting Research and Technology, 2015, 47, 149-160.	1.2	46
11	The effect of ambient light condition on road traffic collisions involving pedestrians on pedestrian crossings. Accident Analysis and Prevention, 2017, 108, 189-200.	3.0	46
12	Obstacle detection: A pilot study investigating the effects of lamp type, illuminance and age. Lighting Research and Technology, 2009, 41, 321-342.	1.2	43
13	Using obstacle detection to identify appropriate illuminances for lighting in residential roads. Lighting Research and Technology, 2013, 45, 362-376.	1.2	41
14	Light source spectrum, brightness perception and visual performance in pedestrian environments: a review. Lighting Research and Technology, 2005, 37, 271-291.	1.2	39
15	Proposed UK guidance for lighting in residential roads. Lighting Research and Technology, 2012, 44, 69-83.	1.2	35
16	Effect of illuminance and spectrum on peripheral obstacle detection by pedestrians. Lighting Research and Technology, 2017, 49, 211-227.	1.2	34
17	Judging the Scientific Quality of Applied Lighting Research. LEUKOS - Journal of Illuminating Engineering Society of North America, 2019, 15, 97-114.	1.5	32
18	Evaluation of pedestrian reassurance gained by higher illuminances in residential streets using the day–dark approach. Lighting Research and Technology, 2019, 51, 557-575.	1.2	32

#	Article	IF	CITATIONS
19	Effects of outdoor lighting on judgements of emotion and gaze direction. Lighting Research and Technology, 2015, 47, 301-315.	1.2	30
20	Research Note: Uncertainty in subjective evaluation of discomfort glare. Lighting Research and Technology, 2015, 47, 379-383.	1.2	28
21	Observing other pedestrians: Investigating the typical distance and duration of fixation. Lighting Research and Technology, 2015, 47, 548-564.	1.2	28
22	Comparing Judgments of Visual Clarity and Spatial Brightness through an Analysis of Studies Using the Category Rating Procedure. LEUKOS - Journal of Illuminating Engineering Society of North America, 2012, 8, 261-281.	1.5	27
23	Illuminance required to detect a pavement obstacle of critical size. Lighting Research and Technology, 2018, 50, 390-404.	1.2	27
24	Discomfort glare evaluation: The influence of anchor bias in luminance adjustments. Lighting Research and Technology, 2019, 51, 131-146.	1.2	27
25	Lighting and recognition of emotion conveyed by facial expressions. Lighting Research and Technology, 2015, 47, 964-975.	1.2	25
26	Comprehensive cost-benefit analysis of energy efficiency in social housing. Case study: Northwest Mexico. Energy and Buildings, 2017, 152, 279-289.	3.1	23
27	Measuring Discomfort from Glare: Recommendations for Good Practice. LEUKOS - Journal of Illuminating Engineering Society of North America, 2021, 17, 338-358.	1.5	23
28	Specifying Enough Light to Feel Reassured on Pedestrian Footpaths. LEUKOS - Journal of Illuminating Engineering Society of North America, 2016, 12, 235-243.	1.5	22
29	Stimulus range bias leads to different settings when using luminance adjustment to evaluate discomfort due to glare. Building and Environment, 2019, 153, 281-287.	3.0	22
30	Using the daylight savings clock change to show ambient light conditions significantly influence active travel. Journal of Environmental Psychology, 2017, 53, 1-10.	2.3	21
31	LRT Digest 1 Maintaining brightness while saving energy in residential roads. Lighting Research and Technology, 2013, 45, 7-21.	1.2	20
32	Counterbalancing Needed to Avoid Bias in Side-By-Side Brightness Matching Tasks. LEUKOS - Journal of Illuminating Engineering Society of North America, 2008, 4, 207-223.	1.5	19
33	Correspondence: Lighting for pedestrians: Is facial recognition what matters?. Lighting Research and Technology, 2011, 43, 129-130.	1.2	19
34	Investigating the use of an adjustment task to set preferred colour of ambient illumination. Color Research and Application, 2013, 38, 46-57.	0.8	19
35	A whole-year approach showing that ambient light level influences walking and cycling. Lighting Research and Technology, 2019, 51, 55-64.	1.2	18
36	A comparison of visual objectives used in side-by-side matching tests. Lighting Research and Technology, 2005, 37, 117-130.	1.2	17

#	Article	IF	CITATIONS
37	Lighting in offices: lamp spectrum and brightness. Coloration Technology, 2011, 127, 114-120.	0.7	17
38	Appraising the intention of other people: Ecological validity and procedures for investigating effects of lighting for pedestrians. Lighting Research and Technology, 2019, 51, 111-130.	1.2	17
39	Investigating methods for measuring face recognition under lamps of different spectral power distribution. Lighting Research and Technology, 2015, 47, 221-235.	1.2	16
40	Order effects when using Hopkinson's multiple criterion scale of discomfort due to glare. Building and Environment, 2018, 136, 54-61.	3.0	16
41	Satisfaction and illuminances set with user-controlled lighting. Architectural Science Review, 2013, 56, 306-314.	1.1	15
42	Lamp spectrum and spatial brightness at photopic levels: A basis for developing a metric. Lighting Research and Technology, 2015, 47, 80-102.	1.2	15
43	Using Category Rating to Evaluate the Lit Environment: Is a Meaningful Opinion Captured?. LEUKOS - Journal of Illuminating Engineering Society of North America, 2019, 15, 127-142.	1.5	15
44	Investigating the chromatic contribution to recognition of facial expression. Lighting Research and Technology, 2017, 49, 243-258.	1.2	14
45	The influence of luminance, observation duration and procedure on the recognition of pedestrians' faces. Lighting Research and Technology, 2015, 47, 693-704.	1.2	13
46	An error in brightness matching associated with the application of dimming. Lighting Research and Technology, 2001, 33, 223-229.	1.2	12
47	Experimental conditions to examine the relationship between lamp colour properties and apparent brightness. Lighting Research and Technology, 2002, 34, 29-38.	1.2	12
48	Gaze direction when driving after dark on main and residential roads: Where is the dominant location?. Lighting Research and Technology, 2017, 49, 574-585.	1.2	11
49	An Experimental Study on the Effect of Visual Tasks on Discomfort Due to Peripheral Glare. LEUKOS - Journal of Illuminating Engineering Society of North America, 2019, 15, 17-28.	1.5	11
50	Motorcycle safety after-dark: The factors associated with greater risk of road-traffic collisions. Accident Analysis and Prevention, 2020, 146, 105731.	3.0	11
51	Road lighting density and brightness linked with increased cycling rates after-dark. PLoS ONE, 2020, 15, e0233105.	1.1	11
52	Using Forced Choice Discrimination to Measure the Perceptual Response to Light of Different Characteristics. LEUKOS - Journal of Illuminating Engineering Society of North America, 2013, 9, 245-259.	1.5	10
53	Lamp spectrum and spatial brightness at photopic levels: Investigating prediction using S/P ratio and gamut area. Lighting Research and Technology, 2015, 47, 595-612.	1.2	9
54	A pilot study of road lighting, cycle lighting and obstacle detection. Lighting Research and Technology, 2017, 49, 586-602.	1.2	9

#	Article	IF	CITATIONS
55	Lighting for cycling in the UK—A review. Lighting Research and Technology, 2017, 49, 381-395.	1.2	9
56	Exploring the nature of visual fixations on other pedestrians. Lighting Research and Technology, 2018, 50, 511-521.	1.2	9
57	A comparison of approaches for investigating the impact of ambient light on road traffic collisions. Lighting Research and Technology, 2021, 53, 249-261.	1.2	9
58	The Effect of Lighting on Crime Counts. Energies, 2021, 14, 4099.	1.6	9
59	Maintaining foveal fixation during a peripheral detection task. Lighting Research and Technology, 2016, 48, 898-909.	1.2	8
60	The effect of fog on detection of driving hazards after dark. Lighting Research and Technology, 2018, 50, 1024-1044.	1.2	8
61	The Effect of a Pre-Trial Range Demonstration on Subjective Evaluations Using Category Rating of Discomfort Due to Glare. LEUKOS - Journal of Illuminating Engineering Society of North America, 2021, 17, 43-58.	1.5	8
62	Comment on empirical evidence for the design of public lighting. Safety Science, 2016, 86, 88-91.	2.6	7
63	Correspondence: New methods for the evaluation of discomfort glare. Lighting Research and Technology, 2018, 50, 489-491.	1.2	7
64	The transition between lit and unlit sections of road and detection of driving hazards after dark. Lighting Research and Technology, 2019, 51, 243-261.	1.2	7
65	Road lighting and distraction whilst driving: Establishing the significant types of distraction. Lighting Research and Technology, 2021, 53, 30-40.	1.2	7
66	The association between correlated colour temperature and scotopic/photopic ratio. Lighting Research and Technology, 2019, 51, 803-813.	1.2	6
67	Effectiveness of an alternative model for establishing mesopic luminance. Lighting Research and Technology, 2019, 51, 900-909.	1.2	6
68	A review of design recommendations for P-class road lighting in European and CIE documents – Part 1: Parameters for choosing a lighting class. Lighting Research and Technology, 2020, 52, 607-625.	1.2	6
69	Review of a Published Article. LEUKOS - Journal of Illuminating Engineering Society of North America, 2016, 12, 173-177.	1.5	5
70	Road lighting for pedestrians: Effects of luminaire position on the detection of raised and lowered trip hazards. Lighting Research and Technology, 2020, 52, 79-93.	1.2	5
71	Lighting for pedestrians: Does multi-tasking affect the performance of typical pedestrian tasks?. Lighting Research and Technology, 0, , 147715352110026.	1.2	5
72	Effect of Ambient Light on the Number of Motorized Vehicles, Cyclists, and Pedestrians. Transportation Research Record, 2022, 2676, 593-605.	1.0	5

#	Article	IF	CITATIONS
73	The effect of assuming static or dynamic gaze behaviour on the estimated background luminance of drivers. Lighting Research and Technology, 2019, 51, 384-401.	1.2	4
74	The effect of distraction, response mode and age on peripheral target detection to inform studies of lighting for driving. Lighting Research and Technology, 2021, 53, 637-656.	1.2	4
75	Correspondence: A new two-step approach for evaluating discomfort from glare. Lighting Research and Technology, 2022, 54, 91-92.	1.2	3
76	Extending observations of ambient light level and active travel to explore age and gender differences in reassurance. Lighting Research and Technology, 0, , 147715352210806.	1.2	3
77	Author's Reply to Review of a Published Article. LEUKOS - Journal of Illuminating Engineering Society of North America, 2017, 13, 21-22.	1.5	2
78	The pedestrian's perspective: How do illuminance variations affect reassurance?. , 2017, , .		2
79	Correspondence: Discussion of †The cross validation and robustness of daylight glare metrics'. Lighting Research and Technology, 2020, 52, 314-317.	1.2	2
80	New Lighting Recommendations for the Classroom of the Future Based on Luminous Parameters of Display Screen Equipment. Journal of Light and Visual Environment, 2010, 34, 165-169.	0.2	1
81	Opinion: Methodology matters. Lighting Research and Technology, 2015, 47, 132-132.	1.2	1
82	The effects of glare and inhomogeneous visual fields on contrast detection in the context of driving. Lighting Research and Technology, 2018, 50, 537-551.	1.2	1
83	Correspondence: Road lighting and the detection of slip hazards when walking. Lighting Research and Technology, 2019, 51, 324-325.	1.2	1
84	Research Note: Describing average illuminance for P-class roads. Lighting Research and Technology, 2020, 52, 1057-1062.	1.2	1
85	The prevalence of in-vehicle driving distractions in road traffic collisions as a function of road type. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 84, 211-222.	1.8	1
86	Comment on "Technical and economic analysis of road lighting solutions based on mesopic vision. Building and Environment 2009;44:66–75― Building and Environment, 2009, 44, 2006-2007.	3.0	0
87	Does expression choice affect the analysis of light spectrum and facial emotion recognition?. Lighting Research and Technology, 2018, 50, 294-302.	1.2	0
88	Road lighting density and brightness linked with increased cycling rates after-dark. , 2020, 15, e0233105.		0
89	Road lighting density and brightness linked with increased cycling rates after-dark. , 2020, 15, e0233105.		0
90	Road lighting density and brightness linked with increased cycling rates after-dark. , 2020, 15, e0233105.		0

#	Article	IF	CITATIONS
91	Incorrect categorisation of ambient light level at the time of a road traffic collision. Lighting Research and Technology, 2024, 56, 87-101.	1.2	0
92	Research note: Variation of the effect of ambient light level on crime frequency with type of crime and location. Lighting Research and Technology, 0, , 147715352211006.	1.2	0