Henning Stöckmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3549215/publications.pdf

Version: 2024-02-01

43 papers

1,743 citations

236925 25 h-index 276875 41 g-index

45 all docs 45 docs citations

45 times ranked

2941 citing authors

#	Article	IF	Citations
1	The "Sweet―Side of the Protein Corona: Effects of Glycosylation on Nanoparticle–Cell Interactions. ACS Nano, 2015, 9, 2157-2166.	14.6	184
2	Exploring isonitrile-based click chemistry for ligation with biomolecules. Organic and Biomolecular Chemistry, 2011, 9, 7303.	2.8	110
3	Automated, High-Throughput IgG-Antibody Glycoprofiling Platform. Analytical Chemistry, 2013, 85, 8841-8849.	6.5	102
4	Imaging sialylated tumor cell glycans <i>in vivo</i> . FASEB Journal, 2011, 25, 2528-2537.	0.5	80
5	Bacterial Biosynthetic Gene Clusters Encoding the Anti-cancer Haterumalide Class of Molecules. Journal of Biological Chemistry, 2012, 287, 39125-39138.	3.4	80
6	Metabolic Glycan Imaging by Isonitrile–Tetrazine Click Chemistry. ChemBioChem, 2013, 14, 1063-1067.	2.6	79
7	Development and evaluation of new cyclooctynes for cell surface glycan imaging in cancer cells. Chemical Science, 2011, 2, 932.	7.4	71
8	Imaging Cell Surface Glycosylation in Vivo Using "Double Click―Chemistry. Bioconjugate Chemistry, 2013, 24, 934-941.	3.6	66
9	Classical galactosaemia: novel insights in IgG N-glycosylation and N-glycan biosynthesis. European Journal of Human Genetics, 2016, 24, 976-984.	2.8	60
10	Plasma N-glycans in colorectal cancer risk. Scientific Reports, 2018, 8, 8655.	3.3	57
11	Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners' Perspective. Journal of Medicinal Chemistry, 2018, 61, 8504-8535.	6.4	55
12	<i>N-</i> Glycan Abnormalities in Children with Galactosemia. Journal of Proteome Research, 2014, 13, 385-394.	3.7	50
13	Dual-sugar imaging using isonitrile and azido-based click chemistries. Organic and Biomolecular Chemistry, 2013, 11, 7297.	2.8	49
14	Sialylation of N-Linked Glycans Influences the Immunomodulatory Effects of IgM on T Cells. Journal of Immunology, 2015, 194, 151-157.	0.8	48
15	Ultrahigh Throughput, Ultrafiltration-Based <i>N</i> -Glycomics Platform for Ultraperformance Liquid Chromatography (ULTRA ³). Analytical Chemistry, 2015, 87, 8316-8322.	6.5	46
16	Small Molecule IL-36Î ³ Antagonist as a Novel Therapeutic Approach for Plaque Psoriasis. Scientific Reports, 2019, 9, 9089.	3.3	42
17	Integrating biomarkers across omic platforms: an approach to improve stratification of patients with indolent and aggressive prostate cancer. Molecular Oncology, 2018, 12, 1513-1525.	4.6	41
18	Comprehensive Profiling of Glycosphingolipid Glycans Using a Novel Broad Specificity Endoglycoceramidase in a High-Throughput Workflow. Analytical Chemistry, 2016, 88, 4795-4802.	6.5	37

#	Article	IF	CITATIONS
19	Copper-free click—a promising tool for pre-targeted PET imaging. Chemical Communications, 2012, 48, 991-993.	4.1	35
20	Residual Ligand Entropy in the Binding of <i>p</i> -Substituted Benzenesulfonamide Ligands to Bovine Carbonic Anhydrase II. Journal of the American Chemical Society, 2008, 130, 12420-12426.	13.7	34
21	Serum <i>N</i> â€glycome alterations in breast cancer during multimodal treatment and followâ€up. Molecular Oncology, 2017, 11, 1361-1379.	4.6	32
22	Quantitative ligand and receptor binding studies reveal the mechanism of interleukin-36 (IL-36) pathway activation. Journal of Biological Chemistry, 2018, 293, 403-411.	3.4	31
23	High-throughput characterization of the functional impact of IgG Fc glycan aberrancy in juvenile idiopathic arthritis. Glycobiology, 2017, 27, 1099-1108.	2.5	29
24	IgG Fc glycosylation as an axis of humoral immunity in childhood. Journal of Allergy and Clinical Immunology, 2020, 145, 710-713.e9.	2.9	27
25	(E,E)-1,5-Cyclooctadiene: a small and fast click-chemistry multitalent. Chemical Communications, 2011, 47, 7203.	4.1	26
26	Orthogonal Technologies for NISTmAb N-Glycan Structure Elucidation and Quantitation. ACS Symposium Series, 2015, , 185-235.	0.5	26
27	Imaging Glycosylation In Vivo by Metabolic Labeling and Magnetic Resonance Imaging. Angewandte Chemie - International Edition, 2016, 55, 1286-1290.	13.8	26
28	Effects of temporary low-dose galactose supplements in children aged 5–12 y with classical galactosemia: a pilot study. Pediatric Research, 2015, 78, 272-279.	2.3	25
29	<i>N</i> -Glycosylation of Serum IgG and Total Glycoproteins in MAN1B1 Deficiency. Journal of Proteome Research, 2015, 14, 4402-4412.	3.7	25
30	<i>N</i> â€glycan signatures identified in tumor interstitial fluid and serum of breast cancer patients: association with tumor biology and clinical outcome. Molecular Oncology, 2018, 12, 972-990.	4.6	24
31	High-Throughput Analysis of the Plasma N-Glycome by UHPLC. Methods in Molecular Biology, 2017, 1503, 97-108.	0.9	20
32	Cell-Surface Receptor–Ligand Interaction Analysis with Homogeneous Time-Resolved FRET and Metabolic Glycan Engineering: Application to Transmembrane and GPI-Anchored Receptors. Journal of the American Chemical Society, 2017, 139, 16822-16829.	13.7	18
33	A Robust and Versatile Automated Glycoanalytical Technology for Serum Antibodies and Acute Phase Proteins: Ovarian Cancer Case Study. Molecular and Cellular Proteomics, 2019, 18, 2191-2206.	3.8	18
34	Advances in analytical methodologies to guide bioprocess engineering for bio-therapeutics. Methods, 2017, 116, 63-83.	3.8	17
35	Glycosylation in Indolent, Significant and Aggressive Prostate Cancer by Automated High-Throughput N-Glycan Profiling. International Journal of Molecular Sciences, 2020, 21, 9233.	4.1	14
36	Serum $\langle i \rangle N \langle i \rangle$ -Glycome Characterization in Patients with Resectable Periampullary Adenocarcinoma. Journal of Proteome Research, 2015, 14, 5144-5156.	3.7	10

#	Article	IF	CITATIONS
37	IgG N-Glycosylation Galactose Incorporation Ratios for the Monitoring of Classical Galactosaemia. JIMD Reports, 2015, 27, 47-53.	1.5	10
38	LC/MSâ€based Intact IgG and Released Glycan Analysis for Bioprocessing Applications. Biotechnology Journal, 2018, 13, e1700185.	3.5	10
39	Imaging Glycosylation In Vivo by Metabolic Labeling and Magnetic Resonance Imaging. Angewandte Chemie, 2016, 128, 1308-1312.	2.0	8
40	Pregnancy-Associated Changes of IgG and Serum N-Glycosylation in Camel (<i>Camelus) Tj ETQq0 0 0 rgBT /Ove</i>	erlock 10 ⁻ 3.7	Tf 50 622 Td (
41	Development of inverse electron demand Diels–Alder ligation and TR-FRET assays for the determination of ligand–protein target occupancy in live cells. MedChemComm, 2017, 8, 789-795.	3.4	8
42	Glycanâ€Mediated, Ligandâ€Controlled Click Chemistry for Drugâ€Target Identification. ChemBioChem, 2016, 17, 150-154.	2.6	4
43	Rýcktitelbild: Imaging Glycosylation In Vivo by Metabolic Labeling and Magnetic Resonance Imaging (Angew. Chem. 4/2016). Angewandte Chemie, 2016, 128, 1592-1592.	2.0	O