
Giuliana Salvatore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/354901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Annurca Flesh Apple Polyphenols in Human Thyroid Cancer Cell Lines. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-14.	1.9	3
2	Adiponectin and leptin exert antagonizing effects on proliferation and motility of papillary thyroid cancer cell lines. Journal of Physiology and Biochemistry, 2021, 77, 237-248.	1.3	16
3	miR-622 is a novel potential biomarker of breast carcinoma and impairs motility of breast cancer cells through targeting NUAK1 kinase. British Journal of Cancer, 2020, 123, 426-437.	2.9	20
4	The TUSC2 Tumour Suppressor Inhibits the Malignant Phenotype of Human Thyroid Cancer Cells via SMAC/DIABLO Protein. International Journal of Molecular Sciences, 2020, 21, 702.	1.8	15
5	Junctional adhesion moleculeâ€A is downâ€regulated in anaplastic thyroid carcinomas and reduces cancer cell aggressiveness by modulating p53 and GSK3 α/β pathways. Molecular Carcinogenesis, 2019, 58, 1181-1193.	1.3	19
6	miR-650 promotes motility of anaplastic thyroid cancer cells by targeting PPP2CA. Endocrine, 2019, 65, 582-594.	1.1	26
7	Multimodal imaging for a theranostic approach in a murine model of B-cell lymphoma with engineered nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 483-491.	1.7	11
8	Preclinical Imaging for the Study of Mouse Models of Thyroid Cancer. International Journal of Molecular Sciences, 2017, 18, 2731.	1.8	5
9	<i>TWIST1</i> /miR-584/ <i>TUSC2</i> pathway induces resistance to apoptosis in thyroid cancer cells. Oncotarget, 2016, 7, 70575-70588.	0.8	28
10	High-Frequency Ultrasound-Guided Injection for the Generation of a Novel Orthotopic Mouse Model of Human Thyroid Carcinoma. Thyroid, 2016, 26, 552-558.	2.4	12
11	Anaplastic Thyroid Carcinoma: Molecular Tools for Diagnosis and Therapy. International Journal of Endocrinology, 2015, 2015, 1-2.	0.6	3
12	Identification of Targets of Twist1 Transcription Factor in Thyroid Cancer Cells. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1617-E1626.	1.8	23
13	Anterior gradient protein 2 promotes survival, migration and invasion of papillary thyroid carcinoma cells. Molecular Cancer, 2014, 13, 160.	7.9	22
14	<i>YAP1</i> acts as oncogenic target of 11q22 amplification in multiple cancer subtypes. Oncotarget, 2014, 5, 2608-2621.	0.8	62
15	Imaging of thyroid tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. BMC Medical Imaging, 2013, 13, 31.	1.4	17
16	FOXM1 is a molecular determinant of the mitogenic and invasive phenotype of anaplastic thyroid carcinoma. Endocrine-Related Cancer, 2012, 19, 695-710.	1.6	36
17	Novel candidate genes of thyroid tumourigenesis identified in Trk-T1 transgenic mice. Endocrine-Related Cancer, 2012, 19, 409-421.	1.6	22
18	TWIST1 Plays a Pleiotropic Role in Determining the Anaplastic Thyroid Cancer Phenotype. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E772-E781.	1.8	39

GIULIANA SALVATORE

#	Article	IF	CITATIONS
19	Abstract 3869: Allelic loss of a specific 3p segment: A key target loci involved in the development of highly malignant thyroid cancer histotypes. , 2011, , .		0
20	Extracellular superoxide dismutase is a thyroid differentiation marker down-regulated in cancer. Endocrine-Related Cancer, 2010, 17, 785-796.	1.6	34
21	Cytostatic Activity of Adenosine Triphosphate-Competitive Kinase Inhibitors in <i>BRAF</i> Mutant Thyroid Carcinoma Cells. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 450-455.	1.8	90
22	Identification of Polo-like Kinase 1 as a Potential Therapeutic Target in Anaplastic Thyroid Carcinoma. Cancer Research, 2009, 69, 1916-1923.	0.4	60
23	Morphological Ultrasound Microimaging of Thyroid in Living Mice. Endocrinology, 2009, 150, 4810-4815.	1.4	21
24	Receptor tyrosine kinase inhibitors in thyroid cancer. Best Practice and Research in Clinical Endocrinology and Metabolism, 2008, 22, 1023-1038.	2.2	39
25	Pros and Cons of Cellular Studies in Developing New Drugs for Thyroid Cancers. Thyroid, 2008, 18, 819-822.	2.4	2
26	A Cell Proliferation and Chromosomal Instability Signature in Anaplastic Thyroid Carcinoma. Cancer Research, 2007, 67, 10148-10158.	0.4	167
27	Biological Role and Potential Therapeutic Targeting of the Chemokine Receptor CXCR4 in Undifferentiated Thyroid Cancer. Cancer Research, 2007, 67, 11821-11829.	0.4	100
28	Presence of BRAF V600E in Very Early Stages of Papillary Thyroid Carcinoma. Thyroid, 2007, 17, 381-388.	2.4	64
29	The Heterogeneous Distribution of BRAF Mutation Supports the Independent Clonal Origin of Distinct Tumor Foci in Multifocal Papillary Thyroid Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 3511-3516.	1.8	93
30	RET/Papillary Thyroid Cancer Rearrangement in Nonneoplastic Thyrocytes: Follicular Cells of Hashimoto's Thyroiditis Share Low-Level Recombination Events with a Subset of Papillary Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2414-2423.	1.8	175
31	BAY 43-9006 Inhibition of Oncogenic RET Mutants. Journal of the National Cancer Institute, 2006, 98, 326-334.	3.0	458
32	BRAF Is a Therapeutic Target in Aggressive Thyroid Carcinoma. Clinical Cancer Research, 2006, 12, 1623-1629.	3.2	160
33	The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. Journal of Clinical Investigation, 2005, 115, 1068-1081.	3.9	231
34	Mitogenic Effects of the Up-Regulation of Minichromosome Maintenance Proteins in Anaplastic Thyroid Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4703-4709.	1.8	38
35	Osteopontin Is Overexpressed in Human Papillary Thyroid Carcinomas and Enhances Thyroid Carcinoma Cell Invasiveness. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 5270-5278.	1.8	71
36	Molecular profile of hyalinizing trabecular tumours of the thyroid: High prevalence of RET/PTC rearrangements and absence of B-raf and N-ras point mutations. European Journal of Cancer, 2005, 41, 816-821.	1.3	87

GIULIANA SALVATORE

#	Article	IF	CITATIONS
37	Reply to: Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Letters, 2005, 230, 149-150.	3.2	4
38	Mutation of the PIK3CA Gene in Anaplastic Thyroid Cancer. Cancer Research, 2005, 65, 10199-10207.	0.4	319
39	The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. Journal of Clinical Investigation, 2005, 115, 1068-1081.	3.9	126
40	Analysis of BRAF Point Mutation and RET/PTC Rearrangement Refines the Fine-Needle Aspiration Diagnosis of Papillary Thyroid Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5175-5180.	1.8	252
41	Heterogeneity in the Distribution ofRET/PTCRearrangements within Individual Post-Chernobyl Papillary Thyroid Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4272-4279.	1.8	127
42	BRAFMutations Are Not a Major Event in Post-Chernobyl Childhood Thyroid Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4267-4271.	1.8	171
43	Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Letters, 2004, 209, 1-6.	3.2	152
44	Induction of caspase-dependent programmed cell death in B-cell chronic lymphocytic leukemia by anti-CD22 immunotoxins. Blood, 2004, 103, 2718-2726.	0.6	64
45	BRAF Mutations in Thyroid Tumors Are Restricted to Papillary Carcinomas and Anaplastic or Poorly Differentiated Carcinomas Arising from Papillary Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 5399-5404.	1.8	950
46	Potent Mitogenicity of the RET/PTC3 Oncogene Correlates with Its Prevalence in Tall-Cell Variant of Papillary Thyroid Carcinoma. American Journal of Pathology, 2002, 160, 247-254.	1.9	103
47	Different mutations of the RET gene cause different human tumoral diseases. Biochimie, 1999, 81, 397-402.	1.3	12
48	Only the Substitution of Methionine 918 with a Threonine and Not with Other Residues Activates RET Transforming Potential. , 0, .		7