Xiang Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3548967/publications.pdf

Version: 2024-02-01

1163117 1281871 24 280 8 11 citations h-index g-index papers 24 24 24 518 times ranked all docs docs citations citing authors

#	Article	IF	CITATIONS
1	Photoreactive and Metalâ€Platable Copolymer Inks for Highâ€Throughput, Roomâ€Temperature Printing of Flexible Metal Electrodes for Thinâ€Film Electronics. Advanced Materials, 2016, 28, 4926-4934.	21.0	77
2	Low-Voltage a-InGaZnO Thin-Film Transistors With Anodized Thin HfO ₂ Gate Dielectric. IEEE Electron Device Letters, 2015, 36, 573-575.	3.9	51
3	Anodized ITO Thinâ€Film Transistors. Advanced Functional Materials, 2014, 24, 4170-4175.	14.9	41
4	Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25850-25857.	8.0	36
5	A Back-Channel-Etched Amorphous InGaZnO Thin-Film Transistor Technology With Al-Doped ZnO as Source/Drain and Pixel Electrodes. IEEE Transactions on Electron Devices, 2016, 63, 2205-2209.	3.0	15
6	Indium–Tin–Oxide Thin-Film Transistors With In Situ Anodized Ta ₂ O ₅ Passivation Layer. IEEE Electron Device Letters, 2016, 37, 603-606.	3.9	12
7	a-IGZO TFTs With Inductively Coupled Plasma Chemical Vapor Deposited \${m SiO}_{x}\$ Gate Dielectric. IEEE Transactions on Electron Devices, 2013, 60, 2687-2690.	3.0	10
8	Back Channel Anodization Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors Process. IEEE Electron Device Letters, 2015, 36, 357-359.	3.9	9
9	Fabrication of p-type copper oxide thin-film transisters at different oxygen partial pressure. , 2014, , .		6
10	Pâ€9: Improved Electrical Stability of Doubleâ€Gate aâ€IGZO TFTs. Digest of Technical Papers SID International Symposium, 2015, 46, 1151-1154.	0.3	5
11	A Multi-\$V_{mathrm {th}}\$ a-IGZO TFT Technology Using Anodization to Selectively Reduce Oxygen Vacancy Concentration in Channel Regions. IEEE Electron Device Letters, 2014, 35, 1248-1250.	3.9	3
12	Comparative study of aâ€IGZO TFTs with direct current and radio frequency sputtered channel layers. Journal of the Society for Information Display, 2015, 23, 306-312.	2.1	3
13	Estimation of threshold voltage shift in a-IGZO TFTs under different bias temperature stress by improved stretched-exponential equation. , $2016, , .$		3
14	Characteristics of double-gate a-IGZO TFT. , 2014, , .		2
15	Effects of over-etching time on the characteristics of amorphous IGZO thin-film transistors with back-channel-etch structure. , $2015, , .$		2
16	Indium gallium zinc oxide - Carbon nanotube composite thin film transistor. , 2014, , .		1
17	Study on the transition between p and n types of SnO $<$ inf $>$ x $<$ /inf $>$ film deposited by DC sputtering. , 2014, , .		1
18	Impacts of substrate heating schemes on characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs fabricated on flexible substrates. , 2014, , .		1

#	Article	IF	CITATIONS
19	Comparison of N <inf> 2</inf> and ar plasma treatment for source/drain formation in self-aligned top-gate amorphous InGaZnO thin film transistor. , 2016, , .		1
20	Oxygen partial pressure and annealing temperature influence on the performance of back-channel-etch zinc tin oxide thin film transistors. , $2016, , .$		1
21	Homojunction In <inf>2</inf> O <inf>3</inf> -TFTs prepared by anodization technique., 2014, , .		O
22	Fabrication of indium-tin-oxide thin-film transistor using anodization. , 2014, , .		0
23	Impact of wet etchant with different PH value on the performance of back-channel-etch a-IGZO thin-film-transistor. , $2016, $, .		O
24	Characteristics of amorphous In-Ga-Zn-O thin-film-transistors with channel layer deposited by bias sputtering. , 2016, , .		0