Qiongyi Y He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3548691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distribution and quantification of remotely generated Wigner negativity. Npj Quantum Information, 2022, 8, .	6.7	7
2	Experimental Demonstration of Remotely Creating Wigner Negativity via Quantum Steering. Physical Review Letters, 2022, 128, .	7.8	19
3	Enhanced entanglement and asymmetric EPR steering between magnons. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	38
4	Advances in multipartite and high-dimensional Einstein-Podolsky-Rosen steering. Fundamental Research, 2021, 1, 99-101.	3.3	9
5	A generalized multipath delayed-choice experiment on a large-scale quantum nanophotonic chip. Nature Communications, 2021, 12, 2712.	12.8	19
6	Demonstration of Generalized Multi-path Wave-particle Duality on a Quantum Nanophotonic Chip. , 2021, , .		0
7	Quantum Computing with Superconducting Circuits in the Picosecond Regime. Physical Review Applied, 2021, 16, .	3.8	8
8	Remote Generation of Magnon SchrĶdinger Cat State via Magnon-Photon Entanglement. Physical Review Letters, 2021, 127, 087203.	7.8	80
9	Ghost Imaging with Non-Gaussian Quantum Light. Physical Review Applied, 2021, 16, .	3.8	5
10	Experimental demonstration of Einstein-Podolsky-Rosen entanglement in rotating coordinate space. Science Bulletin, 2020, 65, 280-285.	9.0	5
11	Monogamy relations within quadripartite Einstein-Podolsky-Rosen steering based on cascaded four-wave mixing processes. Physical Review A, 2020, 101, .	2.5	13
12	Number-phase entanglement and Einstein-Podolsky-Rosen steering. Physical Review A, 2020, 101, .	2.5	10
13	Steady Bell State Generation via Magnon-Photon Coupling. Physical Review Letters, 2020, 124, 053602.	7.8	132
14	Dynamics of transient cat states in degenerate parametric oscillation with and without nonlinear Kerr interactions. Physical Review A, 2020, 101, .	2.5	24
15	Quasi-fine-grained uncertainty relations. New Journal of Physics, 2020, 22, 073063.	2.9	7
16	Enhancement of magnon-magnon entanglement inside a cavity. Physical Review B, 2020, 101, .	3.2	82
17	Deterministic Distribution of Multipartite Entanglement and Steering in a Quantum Network by Separable States. Physical Review Letters, 2020, 125, 260506.	7.8	31
18	Versatile multipartite Einstein-Podolsky-Rosen steering via a quantum frequency comb. Physical Review Research, 2020, 2, .	3.6	27

#	Article	IF	CITATIONS
19	Nonperturbative leakage elimination for a logical qubit encoded in a mechanical oscillator. Physical Review Research, 2020, 2, .	3.6	2
20	Engineering asymmetric steady-state Einstein-Podolsky-Rosen steering in macroscopic hybrid systems. Physical Review A, 2019, 100, .	2.5	7
21	Discrete time symmetry breaking in quantum circuits: exact solutions and tunneling. New Journal of Physics, 2019, 21, 093035.	2.9	11
22	Diagonal entropy and topological phase transitions in extended Kitaev chains. Annals of Physics, 2019, 411, 167967.	2.8	2
23	Emergence and stability of spontaneous vortex lattices in exciton-polariton condensates. Physical Review B, 2019, 100, .	3.2	5
24	Schr¶dinger cat states and steady states in subharmonic generation with Kerr nonlinearities. Physical Review A, 2019, 100, .	2.5	15
25	Quantifying the Mesoscopic Nature of Einstein-Podolsky-Rosen Nonlocality. Physical Review Letters, 2019, 123, 120402.	7.8	11
26	Multipartite Einstein-Podolsky-Rosen steering sharing with separable states. Physical Review A, 2019, 99, .	2.5	19
27	Manipulation and enhancement of asymmetric steering via interference effects induced by closed-loop coupling. Physical Review A, 2019, 99, .	2.5	34
28	Tripartite Einstein-Podolsky-Rosen steering with linear and nonlinear beamsplitters in four-wave mixing of Rubidium atoms. Optics Express, 2019, 27, 33070.	3.4	16
29	Distribution of Gaussian Einstein-Podolsky-Rosen steering by separable states. , 2019, , .		Ο
30	Multipartite Einstein-Podolsky-Rosen steering sharing with separable states. , 2019, , .		0
31	Multipartite Einstein-Podolsky-Rosen steering sharing with separable states. , 2019, , .		Ο
32	Leggett-Garg tests of macrorealism for bosonic systems including double-well Bose-Einstein condensates and atom interferometers. Physical Review A, 2018, 97, .	2.5	14
33	Entanglement and dynamical phase transition in a spin-orbit-coupled Bose-Einstein condensate. Physical Review A, 2018, 97, .	2.5	6
34	Unconditional Steady-State Entanglement in Macroscopic Hybrid Systems by Coherent Noise Cancellation. Physical Review Letters, 2018, 121, 103602.	7.8	19
35	Experimental Cyclic Interconversion between Coherence and Quantum Correlations. Physical Review Letters, 2018, 121, 050401.	7.8	54
36	Unconditional security of entanglement-based continuous-variable quantum secret sharing. Physical Review A, 2017, 95, .	2.5	124

#	Article	IF	CITATIONS
37	Multipartite Gaussian steering: Monogamy constraints and quantum cryptography applications. Physical Review A, 2017, 95, .	2.5	119
38	Fulde–Ferrell–Larkin–Ovchinnikov pairing states between s- and p-orbital fermions. Frontiers of Physics, 2017, 12, 1.	5.0	1
39	Spin-orbit-coupling-induced spin squeezing in three-component Bose gases. Physical Review A, 2017, 95, .	2.5	14
40	Investigating Einstein-Podolsky-Rosen steering of continuous-variable bipartite states by non-Gaussian pseudospin measurements. Physical Review A, 2017, 96, .	2.5	16
41	Surface-plasmon-enhanced quantum field entanglement through anisotropic Purcell factors. Physical Review A, 2017, 96, .	2.5	3
42	Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States. Physical Review Letters, 2017, 118, 230501.	7.8	101
43	Correlation-based entanglement criteria for bipartite systems. Physical Review A, 2017, 95, .	2.5	2
44	Phase control of entanglement and quantum steering in a three-mode optomechanical system. New Journal of Physics, 2017, 19, 123039.	2.9	28
45	Steady-state atom-light entanglement with engineered spin-orbit coupling. Physical Review A, 2016, 93, .	2.5	3
46	Entanglement in multimode bosonic systems. Proceedings of SPIE, 2016, , .	0.8	0
47	Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2015, 115, 180502.	7.8	237
48	Efficient Scheme for Perfect Collective Einstein-Podolsky-Rosen Steering. Scientific Reports, 2015, 5, 12346.	3.3	11
49	Detection of genuine tripartite entanglement and steering in hybrid optomechanics. Optics Express, 2015, 23, 30104.	3.4	14
50	Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with opticalÂnetworks. Nature Physics, 2015, 11, 167-172.	16.7	249
51	Classifying Directional Gaussian Entanglement, Einstein-Podolsky-Rosen Steering, and Discord. Physical Review Letters, 2015, 114, 060402.	7.8	111
52	Detection of quantum steering in multipartite continuous-variable Greenberger-Horne-Zeilinger–like states. Physical Review A, 2015, 91, .	2.5	20
53	Asymmetric quantum network based on multipartite Einstein–Podolsky–Rosen steering. Journal of the Optical Society of America B: Optical Physics, 2015, 32, A20.	2.1	4
54	Collective multipartite Einstein–Podolsky–Rosen steering: more secure optical networks. Optics Letters, 2014, 39, 6703.	3.3	21

#	Article	IF	CITATIONS
55	Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system. Physical Review A, 2014, 89, .	2.5	67
56	Scalable quantum simulation of pulsed entanglement and Einstein-Podolsky-Rosen steering in optomechanics. Physical Review A, 2014, 90, .	2.5	58
57	Role of thermal noise in tripartite quantum steering. Physical Review A, 2014, 90, .	2.5	27
58	Genuine Multipartite Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2013, 111, 250403.	7.8	188
59	Towards an Einstein–Podolsky–Rosen paradox between two macroscopic atomic ensembles at room temperature. New Journal of Physics, 2013, 15, 063027.	2.9	13
60	Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics. Physical Review A, 2013, 88, .	2.5	79
61	Entanglement, number fluctuations and optimized interferometric phase measurement. New Journal of Physics, 2012, 14, 093012.	2.9	23
62	One-way EPR steering and genuine multipartite EPR steering. , 2012, , .		0
63	Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states. Physical Review A, 2012, 86, .	2.5	67
64	Dynamical preparation of Einstein-Podolsky-Rosen entanglement in two-well Bose-Einstein condensates. Physical Review A, 2012, 86, .	2.5	29
65	Quantum dynamics in ultracold atomic physics. Frontiers of Physics, 2012, 7, 16-30.	5.0	13
66	Entanglement and nonlocality in multi-particle systems. Frontiers of Physics, 2012, 7, 72-85.	5.0	24
67	Unified criteria for multipartite quantum nonlocality. Physical Review A, 2011, 84, .	2.5	100
68	Entanglement, EPR steering, and Bell-nonlocality criteria for multipartite higher-spin systems. Physical Review A, 2011, 83, .	2.5	48
69	Einstein-Podolsky-Rosen Entanglement Strategies in Two-Well Bose-Einstein Condensates. Physical Review Letters, 2011, 106, 120405.	7.8	73
70	Planar quantum squeezing and atom interferometry. Physical Review A, 2011, 84, .	2.5	56
71	Bell inequalities for continuous-variable measurements. Physical Review A, 2010, 81, .	2.5	22
72	Testing for Multipartite Quantum Nonlocality Using Functional Bell Inequalities. Physical Review Letters, 2009, 103, 180402.	7.8	27

#	Article	IF	CITATIONS
73	Digital quantum memories with symmetric pulses. Optics Express, 2009, 17, 9662.	3.4	6
74	Dynamical oscillator-cavity model for quantum memories. Physical Review A, 2009, 79, .	2.5	32
75	Coherent hole-burnings induced by a bichromatic laser field. Optics Communications, 2008, 281, 3137-3142.	2.1	5
76	Slow light by coherent hole burnings. Physical Review A, 2008, 77, .	2.5	4
77	Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids. Physical Review A, 2006, 73, .	2.5	15
78	Effects of resonant absorption and inhomogeneous broadening on reflection and absorption spectra of optical lattices diamond NV centers. Optics Express, 2006, 14, 11727.	3.4	1
79	Efficient electrooptically Q-switched Er:Cr:YSGC laser oscillator-amplifier system with a Glan-Taylor prism polarizer. Laser Physics, 2006, 16, 1605-1609.	1.2	8
80	Comparison of electrooptically Q-switched Er:Cr:YSGG lasers by two polarizers: Glan-Taylor prism and Brewster angle structure. Laser Physics Letters, 2006, 3, 349-352.	1.4	13
81	High index of refraction via quantum interference in a three-level system of Er 3+ -doped yttrium aluminium garnet crystal. Chinese Physics B, 2006, 15, 1798-1805.	1.3	8
82	Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals. Physical Review B, 2006, 73, .	3.2	24
83	Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms. Physical Review A, 2006, 73, .	2.5	10
84	Comparison between four-level model and six-temperature model on the description of a simple mechanical Q-switched CO2 laser. Journal of Applied Physics, 2006, 100, 023121.	2.5	6
85	Analysis of the dynamics of a mechanical Q-switched CO2 laser: Six-temperature model. Journal of Applied Physics, 2005, 98, 073102.	2.5	13