
Michael A Welte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/354867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 419-440.	2.4	571
2	Bidirectional Transport along Microtubules. Current Biology, 2004, 14, R525-R537.	3.9	500
3	The Lipid-Droplet Proteome Reveals that Droplets Are a Protein-Storage Depot. Current Biology, 2006, 16, 1783-1795.	3.9	427
4	Expanding Roles for Lipid Droplets. Current Biology, 2015, 25, R470-R481.	3.9	422
5	Lipid droplet functions beyond energy storage. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1260-1272.	2.4	402
6	Developmental Regulation of Vesicle Transport in Drosophila Embryos: Forces and Kinetics. Cell, 1998, 92, 547-557.	28.9	368
7	Consequences of Motor Copy Number on the Intracellular Transport of Kinesin-1-Driven Lipid Droplets. Cell, 2008, 135, 1098-1107.	28.9	320
8	Coordination of opposite-polarity microtubule motors. Journal of Cell Biology, 2002, 156, 715-724.	5.2	254
9	Dynein-Mediated Cargo Transport in Vivo. Journal of Cell Biology, 2000, 148, 945-956.	5.2	211
10	Proteins under new management: lipid droplets deliver. Trends in Cell Biology, 2007, 17, 363-369.	7.9	185
11	Lipid Droplets Control the Maternal Histone Supply of Drosophila Embryos. Current Biology, 2012, 22, 2104-2113.	3.9	185
12	Lipidomic Analysis of α-Synuclein Neurotoxicity Identifies Stearoyl CoA Desaturase as a Target for Parkinson Treatment. Molecular Cell, 2019, 73, 1001-1014.e8.	9.7	173
13	A new method for manipulating transgenes: engineering heat tolerance in a complex, multicellular organism. Current Biology, 1993, 3, 842-853.	3.9	164
14	Regulation of Lipid-Droplet Transport by the Perilipin Homolog LSD2. Current Biology, 2005, 15, 1266-1275.	3.9	149
15	Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules. Journal of Cell Biology, 2012, 198, 833-846.	5.2	119
16	Fat on the move: intracellular motion of lipid droplets. Biochemical Society Transactions, 2009, 37, 991-996.	3.4	107
17	A novel role for lipid droplets in the organismal antibacterial response. ELife, 2012, 1, e00003.	6.0	98
18	A Determinant for Directionality of Organelle Transport in Drosophila Embryos. Current Biology, 2003, 13, 1660-1668.	3.9	94

MICHAEL A WELTE

#	Article	IF	CITATIONS
19	Emerging Links between Lipid Droplets and Motor Neuron Diseases. Developmental Cell, 2018, 45, 427-432.	7.0	77
20	A role for triglyceride lipase brummer in the regulation of sex differences in Drosophila fat storage and breakdown. PLoS Biology, 2020, 18, e3000595.	5.6	75
21	A conserved role for Snail as a potentiator of active transcription. Genes and Development, 2014, 28, 167-181.	5.9	73
22	Drosophila Lipid Droplets Buffer the H2Av Supply to Protect Early Embryonic Development. Current Biology, 2014, 24, 1485-1491.	3.9	70
23	Organelle-specific Control of Intracellular Transport: Distinctly Targeted Isoforms of the Regulator Klar. Molecular Biology of the Cell, 2005, 16, 1406-1416.	2.1	61
24	Overlapping Functions of Argonaute Proteins in Patterning and Morphogenesis of Drosophila Embryos. PLoS Genetics, 2006, 2, e134.	3.5	48
25	As the fat flies: The dynamic lipid droplets of Drosophila embryos. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1156-1185.	2.4	43
26	Lipid Droplet Motility and Organelle Contacts. Contact (Thousand Oaks (Ventura County, Calif)), 2019, 2, 251525641989568.	1.3	36
27	Developmentally regulated H2Av buffering via dynamic sequestration to lipid droplets in Drosophila embryos. ELife, 2018, 7, .	6.0	34
28	Natural Variation of the Amino-Terminal Glutamine-Rich Domain in Drosophila Argonaute2 Is Not Associated with Developmental Defects. PLoS ONE, 2010, 5, e15264.	2.5	32
29	Targeting the motor regulator Klar to lipid droplets. BMC Cell Biology, 2011, 12, 9.	3.0	31
30	Klar ensures thermal robustness of <i>oskar</i> localization by restraining RNP motility. Journal of Cell Biology, 2014, 206, 199-215.	5.2	27
31	The basis for a heat-induced developmental defect: defining crucial lesions Genes and Development, 1995, 9, 2240-2250.	5.9	25
32	Bidirectional Transport: MatchmakingÂfor Motors. Current Biology, 2010, 20, R410-R413.	3.9	25
33	A Luciferase-fragment Complementation Assay to Detect Lipid Droplet-associated Protein-Protein Interactions. Molecular and Cellular Proteomics, 2017, 16, 329-345.	3.8	24
34	PEDF regulates plasticity of a novel lipid-MTOC axis in prostate cancer associated fibroblasts. Journal of Cell Science, 2018, 131, .	2.0	21
35	In-vivo Centrifugation of Drosophila Embryos. Journal of Visualized Experiments, 2010, , .	0.3	17
36	Lipid droplet velocity is a microenvironmental sensor of aggressive tumors regulated by V-ATPase and PEDF. Laboratory Investigation, 2019, 99, 1822-1834.	3.7	17

MICHAEL A WELTE

#	Article	IF	CITATIONS
37	Sequestration to lipid droplets promotes histone availability by preventing turnover of excess histones. Development (Cambridge), 2021, 148, .	2.5	17
38	Temporal control of bidirectional lipid-droplet motion depends on the ratio of kinesin-1 and its cofactor Halo. Journal of Cell Science, 2016, 129, 1416-28.	2.0	16
39	How Brain Fat Conquers Stress. Cell, 2015, 163, 269-270.	28.9	14
40	Drosophila KASH-domain protein Klarsicht regulates microtubule stability and integrin receptor localization during collective cell migration. Developmental Biology, 2015, 407, 103-114.	2.0	10
41	Novel Isoforms of the Transport Regulator Klar. PLoS ONE, 2013, 8, e55070.	2.5	4
42	Visualizing Cytoskeleton-Dependent Trafficking of Lipid-Containing Organelles in Drosophila Embryos. Journal of Visualized Experiments, 2021, , .	0.3	3