Radhey Shyam Jangid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3548605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Base isolation for near-fault motions. Earthquake Engineering and Structural Dynamics, 2001, 30, 691-707.	4.4	357
2	Optimum parameters of tuned mass damper for damped main system. Structural Control and Health Monitoring, 2007, 14, 448-470.	4.0	190
3	SEISMIC BEHAVIOUR OF BASE-ISOLATED BUILDINGS: A STATE-OF-THE ART REVIEW Proceedings of the Institution of Civil Engineers: Structures and Buildings, 1995, 110, 186-203.	0.8	165
4	Optimum Multiple Tuned Mass Dampers for base-excited undamped system. Earthquake Engineering and Structural Dynamics, 1999, 28, 1041-1049.	4.4	116
5	Seismic Response of Isolated Bridges. Journal of Bridge Engineering, 2004, 9, 156-166.	2.9	98
6	Effectiveness of Elliptical Rolling Rods for Base Isolation. Journal of Structural Engineering, 1998, 124, 469-472.	3.4	84
7	PERFORMANCE OF MULTIPLE TUNED MASS DAMPERS FOR TORSIONALLY COUPLED SYSTEM. Earthquake Engineering and Structural Dynamics, 1997, 26, 307-317.	4.4	75
8	OPTIMUM MULTIPLE TUNED MASS DAMPERS FOR BASE-EXCITED DAMPED MAIN SYSTEM. International Journal of Structural Stability and Dynamics, 2004, 04, 527-542.	2.4	74
9	Base Isolation for Seismic Retrofitting of Structures. Practice Periodical on Structural Design and Construction, 2008, 13, 175-185.	1.3	67
10	Nonlinear Response of Torsionally Coupled Base Isolated Structure. Journal of Structural Engineering, 1994, 120, 1-22.	3.4	60
11	A COMPARATIVE STUDY OF PERFORMANCE OF VARIOUS ISOLATION SYSTEMS FOR LIQUID STORAGE TANKS. International Journal of Structural Stability and Dynamics, 2002, 02, 573-591.	2.4	58
12	Effects of Pier and Deck Flexibility on the Seismic Response of Isolated Bridges. Journal of Bridge Engineering, 2006, 11, 109-121.	2.9	57
13	Seismic Response of Adjacent Buildings Connected with Friction Dampers. Bulletin of Earthquake Engineering, 2006, 4, 43-64.	4.1	57
14	Assessment of liquefaction potential index for Mumbai city. Natural Hazards and Earth System Sciences, 2012, 12, 2759-2768.	3.6	57
15	Response of SDOF system to non-stationary earthquake excitation. Earthquake Engineering and Structural Dynamics, 2004, 33, 1417-1428.	4.4	55
16	Variable friction pendulum system for near-fault ground motions. Structural Control and Health Monitoring, 2008, 15, 568-584.	4.0	54
17	Stochastic Response of Bridges Seismically Isolated by Friction Pendulum System. Journal of Bridge Engineering, 2008, 13, 319-330.	2.9	54
18	Optimum viscous damper for connecting adjacent SDOF structures for harmonic and stationary white-noise random excitations. Earthquake Engineering and Structural Dynamics. 2007. 36. 563-571.	4.4	51

#	Article	IF	CITATIONS
19	OPTIMUM MULTIPLE TUNED MASS DAMPERS FOR THE WIND EXCITED BENCHMARK BUILDING / OPTIMALŪS MASÄ–S SLOPINTUVAI VÄ–JO VEIKIAMUOSE AUKÅTYBINIUOSE PASTATUOSE. Journal of Civil Engineering and Management, 2011, 17, 540-557.	3.5	51
20	Seismic Response of Structures with Variable Friction Pendulum System. Journal of Earthquake Engineering, 2009, 13, 193-216.	2.5	42
21	Stochastic response of building frames isolated by lead-rubber bearings. Structural Control and Health Monitoring, 2010, 17, 1-22.	4.0	42
22	Dynamic response of identical adjacent structures connected by viscous damper. Structural Control and Health Monitoring, 2014, 21, 205-224.	4.0	42
23	Vibration control of bridge subjected to multi-axle vehicle using multiple tuned mass friction dampers. International Journal of Advanced Structural Engineering, 2016, 8, 213-227.	1.3	42
24	EFFECTIVENESS OF SEISMIC ISOLATION FOR CABLE-STAYED BRIDGES. International Journal of Structural Stability and Dynamics, 2006, 06, 77-96.	2.4	40
25	SEISMIC RESPONSE OF SLIDING STRUCTURES TO BIDIRECTIONAL EARTHQUAKE EXCITATION. Earthquake Engineering and Structural Dynamics, 1996, 25, 1301-1306.	4.4	38
26	Variable dampers for earthquake protection of benchmark highway bridges. Smart Materials and Structures, 2009, 18, 115011.	3.5	37
27	Optimum Tuned Inerter Damper for Base-Isolated Structures. Journal of Vibration Engineering and Technologies, 2021, 9, 1483-1497.	2.2	36
28	Seismic response of dynamically similar adjacent structures connected with viscous dampers. IES Journal Part A: Civil and Structural Engineering, 2010, 3, 1-13.	0.4	35
29	Seismic response of liquid storage steel tanks with variable frequency pendulum isolator. KSCE Journal of Civil Engineering, 2011, 15, 1041-1055.	1.9	34
30	Seismic response of the double variable frequency pendulum isolator. Structural Control and Health Monitoring, 2011, 18, 450-470.	4.0	33
31	Behaviour of liquid storage tanks with VCFPS under near-fault ground motions. Structure and Infrastructure Engineering, 2012, 8, 71-88.	3.7	30
32	Torsional Displacements in Base-Isolated Buildings. Earthquake Spectra, 2000, 16, 443-454.	3.1	24
33	Rigid body response of base-isolated structures. Structural Control and Health Monitoring, 2002, 9, 171-188.	0.5	24
34	Design of tuned liquid sloshing dampers using nonlinear constraint optimization for across-wind response control of benchmark tall building. Structures, 2021, 33, 2675-2688.	3.6	23
35	Optimum parameters and performance of negative stiffness and inerter based dampers for base-isolated structures. Bulletin of Earthquake Engineering, 2023, 21, 1411-1438.	4.1	22
36	SEMIACTIVE CONTROL OF SEISMICALLY ISOLATED BRIDGES. International Journal of Structural Stability and Dynamics, 2008, 08, 547-568.	2.4	21

RADHEY SHYAM JANGID

#	Article	IF	CITATIONS
37	Response of the Double Variable Frequency Pendulum Isolator under Triaxial Ground Excitations. Journal of Earthquake Engineering, 2010, 14, 527-558.	2.5	21
38	Seismic behavior of variable frequency pendulum isolator. Earthquake Engineering and Engineering Vibration, 2008, 7, 193-205.	2.3	20
39	Spectral analysis of systems with non-classical damping using classical mode superposition technique. Earthquake Engineering and Structural Dynamics, 1993, 22, 723-735.	4.4	19
40	Use of pseudo-negative stiffness dampers for reducing the seismic response of bridges: a benchmark study. Bulletin of Earthquake Engineering, 2012, 10, 1561-1583.	4.1	18
41	Dynamic response of structure with tuned mass friction damper. International Journal of Advanced Structural Engineering, 2016, 8, 363-377.	1.3	18
42	Soil liquefaction studies at Mumbai city. Natural Hazards, 2012, 63, 375-390.	3.4	16
43	Response of windâ€excited benchmark building installed with dampers. Structural Design of Tall and Special Buildings, 2011, 20, 497-514.	1.9	15
44	Optimum parameters of tuned mass damper-inerter for damped structure under seismic excitation. International Journal of Dynamics and Control, 2022, 10, 1322-1336.	2.5	15
45	Performance of variable curvature sliding isolators in baseâ€isolated benchmark building. Structural Design of Tall and Special Buildings, 2012, 21, 354-373.	1.9	14
46	Response of an isolated cable-stayed bridge under bi-directional seismic actions. Structure and Infrastructure Engineering, 2010, 6, 347-363.	3.7	13
47	INFLUENCE OF HIGH INITIAL ISOLATOR STIFFNESS ON THE SEISMIC RESPONSE OF A BASE-ISOLATED BENCHMARK BUILDING. International Journal of Structural Stability and Dynamics, 2011, 11, 1201-1228.	2.4	13
48	Tsunami hazard assessment of Indian coast. Natural Hazards, 2016, 82, 733-762.	3.4	12
49	Seismic response of torsionally coupled building with passive and semi-active stiffness dampers. International Journal of Advanced Structural Engineering, 2015, 7, 31-48.	1.3	11
50	Seismic response control of a building by negative stiffness devices. Asian Journal of Civil Engineering, 2018, 19, 849-866.	1.6	11
51	An Empirical Formulation for the Damping Ratio of Shape Memory Alloy for Base-Isolated Structures. International Journal of Structural Stability and Dynamics, 2019, 19, 1950074.	2.4	11
52	Semi-Active Stiffness Dampers for Seismic Control of Structures. Advances in Structural Engineering, 2007, 10, 501-524.	2.4	10
53	Seismic Response of Base-Isolated Benchmark Building with Variable Sliding Isolators. Journal of Earthquake Engineering, 2010, 14, 1063-1091.	2.5	10
54	Seismic control of benchmark cable-stayed bridge using passive hybrid systems. IES Journal Part A: Civil and Structural Engineering, 2009, 2, 1-16.	0.4	9

RADHEY SHYAM JANGID

#	Article	IF	CITATIONS
55	Seismic Response of Torsionally Coupled System with Semi-Active Variable Dampers. Journal of Earthquake Engineering, 2012, 16, 1043-1054.	2.5	9
56	Seismic Performance of the Inerter and Negative Stiffness–Based Dampers for Vibration Control of Structures. Frontiers in Built Environment, 2021, 7, .	2.3	9
57	SEISMIC RESPONSE OF A SIMPLE TORSIONALLY COUPLED STRUCTURE WITH A SLIDING SUPPORT Proceedings of the Institution of Civil Engineers: Structures and Buildings, 1993, 99, 271-280.	0.8	8
58	Seismic performance of benchmark highway bridge installed with piezoelectric friction dampers. IES Journal Part A: Civil and Structural Engineering, 2011, 4, 191-212.	0.4	8
59	Performance and optimal design of baseâ€isolated structures with clutching inerter damper. Structural Control and Health Monitoring, 2022, 29, .	4.0	8
60	Dynamic Analysis of Liquid Storage Tanks with Sliding Systems. Advances in Structural Engineering, 2003, 6, 145-158.	2.4	7
61	Seismic Response of Torsionally Coupled System with Magnetorheological Dampers. Advances in Civil Engineering, 2012, 2012, 1-26.	0.7	7
62	Seismic response of multi-story structure with multiple tuned mass friction dampers. International Journal of Advanced Structural Engineering, 2014, 6, 1-13.	1.3	7
63	Seismic Performance Assessment of Clutching Inerter Damper for Isolated Bridges. Practice Periodical on Structural Design and Construction, 2022, 27, .	1.3	7
64	Seismic response of torsionally coupled structures with active control device. Structural Control and Health Monitoring, 2001, 8, 1-15.	0.5	6
65	Multiple tuned liquid sloshing dampers for across-wind response control of benchmark tall building. Innovative Infrastructure Solutions, 2022, 7, 1.	2.2	5
66	VISCOELASTIC DAMPER CONNECTED TO ADJACENT STRUCTURES INVOLVING SEISMIC ISOLATION. Journal of Civil Engineering and Management, 2005, 11, 309-322.	3.5	4
67	Free Field Surface Motion at Different Site Types due to Near-Fault Ground Motions. ISRN Geophysics, 2012, 2012, 1-6.	0.7	4
68	Optimal Design of True Negative Stiffness Damper as a Supplemental Damping Device for Base-Isolated Structure. Lecture Notes in Civil Engineering, 2022, , 471-483.	0.4	3
69	Optimal Design of Tuned Liquid Column Damper for Wind-induced Response Control of Benchmark Tall Building. Journal of Vibration Engineering and Technologies, 0, , .	2.2	3
70	Soil–structure interaction effect on seismic response of controlled asymmetric buildings. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 0, , 1-14.	0.8	2
71	DYNAMIC RESPONSE OF STRUCTURES SUPPORTED ON ELLIPTICAL ROLLING RODS. Doboku Gakkai Ronbunshu, 1999, 1999, 11-20.	0.2	0