
Regina M Sullivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3547937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Added Value of Crosstalk Between Developmental Circuit Neuroscience and Clinical Practice to Inform the Treatment of Adolescent Anxiety. Biological Psychiatry Global Open Science, 2023, 3, 169-178.	2.2	6
2	Neurobiology of Parental Regulation of the Infant and Its Disruption by Trauma Within Attachment. Frontiers in Behavioral Neuroscience, 2022, 16, 806323.	2.0	2
3	Neurobiology of Infant Fear and Anxiety: Impacts of Delayed Amygdala Development and Attachment FigureÂQuality. Biological Psychiatry, 2021, 89, 641-650.	1.3	22
4	Maternal continuous oral oxycodone self-administration alters pup affective/social communication but not spatial learning or sensory-motor function. Drug and Alcohol Dependence, 2021, 221, 108628.	3.2	4
5	Infant Attachment and Social Modification of Stress Neurobiology. Frontiers in Systems Neuroscience, 2021, 15, 718198.	2.5	4
6	Oxytocin neurons enable social transmission of maternal behaviour. Nature, 2021, 596, 553-557.	27.8	113
7	Bidirectional control of infant rat social behavior via dopaminergic innervation of the basolateral amygdala. Neuron, 2021, 109, 4018-4035.e7.	8.1	26
8	Basolateral amygdala to posterior piriform cortex connectivity ensures precision in learned odor threat. Scientific Reports, 2021, 11, 21746.	3.3	11
9	Defining immediate effects of sensitive periods on infant neurobehavioral function. Current Opinion in Behavioral Sciences, 2020, 36, 106-114.	3.9	11
10	Adverse caregiving in infancy blunts neural processing of the mother. Nature Communications, 2020, 11, 1119.	12.8	28
11	Elevated infant cortisol is necessary but not sufficient for transmission of environmental risk to infant social development: Cross-species evidence of mother–infant physiological social transmission. Development and Psychopathology, 2020, 32, 1696-1714.	2.3	9
12	Parental presence switches avoidance to attraction learning in children. Nature Human Behaviour, 2019, 3, 1070-1077.	12.0	49
13	Development of Threat Expression Following Infant Maltreatment: Infant and Adult Enhancement but Adolescent Attenuation. Frontiers in Behavioral Neuroscience, 2019, 13, 130.	2.0	9
14	Infant Trauma Alters Social Buffering of Threat Learning: Emerging Role of Prefrontal Cortex in Preadolescence. Frontiers in Behavioral Neuroscience, 2019, 13, 132.	2.0	33
15	During infant maltreatment, stress targets hippocampus, but stress with mother present targets amygdala and social behavior. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22821-22832.	7.1	44
16	Sleep Impact on Perception, Memory, and Emotion in Adults and the Effects of Early-Life Experience. Handbook of Behavioral Neuroscience, 2019, , 593-610.	0.7	4
17	Using a Developmental Ecology Framework to Align Fear Neurobiology Across Species. Annual Review of Clinical Psychology, 2019, 15, 345-369.	12.3	57
18	Unique infant neurobiology produces distinctive trauma processing. Developmental Cognitive Neuroscience, 2019, 36, 100637.	4.0	16

#	Article	IF	CITATIONS
19	Neurobiology of maternal regulation of infant fear: the role of mesolimbic dopamine and its disruption by maltreatment. Neuropsychopharmacology, 2019, 44, 1247-1257.	5.4	42
20	Corticosterone administration targeting a hypo-reactive HPA axis rescues a socially-avoidant phenotype in scarcity-adversity reared rats. Developmental Cognitive Neuroscience, 2019, 40, 100716.	4.0	27
21	Early Life Trauma Has Lifelong Consequences for Sleep And Behavior. Scientific Reports, 2019, 9, 16701.	3.3	24
22	Enhancing Executive Functions Through Social Interactions: Causal Evidence Using a Cross-Species Model. Frontiers in Psychology, 2019, 10, 2472.	2.1	14
23	Developing a neurobehavioral animal model of poverty: Drawing cross-species connections between environments of scarcity-adversity, parenting quality, and infant outcome. Development and Psychopathology, 2019, 31, 399-418.	2.3	52
24	Developmental and neurobehavioral transitions in survival circuits. Current Opinion in Behavioral Sciences, 2018, 24, 50-55.	3.9	6
25	Developmental transitions in amygdala PKC isoforms and AMPA receptor expression associated with threat memory in infant rats. Scientific Reports, 2018, 8, 14679.	3.3	16
26	Early life trauma increases threat response of periâ€weaning rats, reduction of axoâ€somatic synapses formed by parvalbumin cells and perineuronal net in the basolateral nucleus of amygdala. Journal of Comparative Neurology, 2018, 526, 2647-2664.	1.6	54
27	Maternal Regulation of Pups' Cortical Activity: Role of Serotonergic Signaling. ENeuro, 2018, 5, ENEURO.0093-18.2018.	1.9	26
28	Neurobehavioral assessment of maternal odor in developing rat pups: implications for social buffering. Social Neuroscience, 2017, 12, 32-49.	1.3	63
29	The neurodevelopment of social buffering and fear learning: integration and crosstalk. Social Neuroscience, 2017, 12, 1-7.	1.3	16
30	From attachment to independence: stress hormone control of ecologically relevant emergence of infants' responses to threat. Current Opinion in Behavioral Sciences, 2017, 14, 78-85.	3.9	8
31	Updating of aversive memories after temporal error detection is differentially modulated by mTOR across development. Learning and Memory, 2017, 24, 115-122.	1.3	9
32	Neurobiology of infant attachment: attachment despite adversity and parental programming of emotionality. Current Opinion in Psychology, 2017, 17, 1-6.	4.9	94
33	Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress, 2017, 20, 421-448.	1.8	263
34	Early life adversity during the infant sensitive period for attachment: Programming of behavioral neurobiology of threat processing and social behavior. Developmental Cognitive Neuroscience, 2017, 25, 145-159.	4.0	63
35	Understanding pup affective state through ethologically significant ultrasonic vocalization frequency. Scientific Reports, 2017, 7, 13483.	3.3	41
36	The neurobiology of safety and threat learning in infancy. Neurobiology of Learning and Memory, 2017, 143, 49-58.	1.9	36

#	Article	IF	CITATIONS
37	Attachment Figure's Regulation of Infant Brain and Behavior. Psychodynamic Psychiatry, 2017, 45, 475-498.	0.3	9
38	Neurobiology of Infant Attachment: Nurturing and Abusive Relationships. , 2017, , 254-263.		0
39	Early-Life Experiences: Enduring Behavioral, Neurological, and Endocrinological Consequences. , 2017, , 133-158.		2
40	Freezing suppression by oxytocin in central amygdala allows alternate defensive behaviours and mother-pup interactions. ELife, 2017, 6, .	6.0	54
41	Unique neurobiology during the sensitive period for attachment produces distinctive infant trauma processing. HA¶gre Utbildning, 2016, 7, 31276.	3.0	24
42	Ecologically relevant neurobehavioral assessment of the development of threat learning. Learning and Memory, 2016, 23, 556-566.	1.3	9
43	Bullying Prevention: a Summary of the Report of the National Academies of Sciences, Engineering, and Medicine. Prevention Science, 2016, 17, 1044-1053.	2.6	55
44	Development of Odor Hedonics: Experience-Dependent Ontogeny of Circuits Supporting Maternal and Predator Odor Responses in Rats. Journal of Neuroscience, 2016, 36, 6634-6650.	3.6	42
45	Olfactory memory networks: from emotional learning to social behaviors. Frontiers in Behavioral Neuroscience, 2015, 9, 36.	2.0	59
46	Mechanisms and functional implications of social buffering in infants: Lessons from animal models. Social Neuroscience, 2015, 10, 500-511.	1.3	43
47	Enduring good memories of infant trauma: Rescue of adult neurobehavioral deficits via amygdala serotonin and corticosterone interaction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 881-886.	7.1	50
48	Paradoxical Neurobehavioral Rescue by Memories of Early-Life Abuse: The Safety Signal Value of Odors Learned during Abusive Attachment. Neuropsychopharmacology, 2015, 40, 906-914.	5.4	59
49	Parental buffering of fear and stress neurobiology: Reviewing parallels across rodent, monkey, and human models. Social Neuroscience, 2015, 10, 474-478.	1.3	125
50	Early Life Trauma and Attachment: Immediate and Enduring Effects on Neurobehavioral and Stress Axis Development. Frontiers in Endocrinology, 2014, 5, 33.	3.5	86
51	Neurobiology of attachment to an abusive caregiver: Shortâ€ŧerm benefits and longâ€ŧerm costs. Developmental Psychobiology, 2014, 56, 1626-1634.	1.6	65
52	The international society for developmental psychobiology Sackler symposium: Early adversity and the maturation of emotion circuits—A crossâ€species analysis. Developmental Psychobiology, 2014, 56, 1635-1650.	1.6	92
53	Maternal Regulation of Infant Brain State. Current Biology, 2014, 24, 1664-1669.	3.9	54
54	Psychobiological mechanisms underlying the social buffering of the hypothalamic–pituitary–adrenocortical axis: A review of animal models and human studies across development Psychological Bulletin, 2014, 140, 256-282.	6.1	558

#	Article	IF	CITATIONS
55	Infant rats can learn time intervals before the maturation of the striatum: evidence from odor fear conditioning. Frontiers in Behavioral Neuroscience, 2014, 8, 176.	2.0	25
56	Neurobiology of secure infant attachment and attachment despite adversity: a mouse model. Genes, Brain and Behavior, 2013, 12, 673-680.	2.2	29
57	It's time to fear! Interval timing in odor fear conditioning in rats. Frontiers in Behavioral Neuroscience, 2013, 7, 128.	2.0	37
58	Developmental Components of Fear and Anxiety in Animal Models. , 2013, , 593-605.		2
59	Effects of Early-Life Abuse Differ across Development: Infant Social Behavior Deficits Are Followed by Adolescent Depressive-Like Behaviors Mediated by the Amygdala. Journal of Neuroscience, 2012, 32, 7758-7765.	3.6	175
60	The Development and Neurobiology of Infant Attachment and Fear. Developmental Neuroscience, 2012, 34, 101-114.	2.0	159
61	Developmental Neurobiology of the Rat Attachment System and Its Modulation by Stress. Behavioral Sciences (Basel, Switzerland), 2012, 2, 79-102.	2.1	9
62	The Neurobiology of Attachment to Nurturing and Abusive Caregivers. Hastings Law Journal, 2012, 63, 1553-1570.	1.7	21
63	Infant Bonding and Attachment to the Caregiver: Insights from Basic and Clinical Science. Clinics in Perinatology, 2011, 38, 643-655.	2.1	144
64	Cortical Processing of Odor Objects. Neuron, 2011, 72, 506-519.	8.1	370
65	Fear Erasure in Mice Requires Synergy Between Antidepressant Drugs and Extinction Training. Science, 2011, 334, 1731-1734.	12.6	347
66	Adult depression-like behavior, amygdala and olfactory cortex functions are restored by odor previously paired with shock during infant's sensitive period attachment learning. Developmental Cognitive Neuroscience, 2011, 1, 77-87.	4.0	51
67	Functional emergence of the hippocampus in context fear learning in infant rats. Hippocampus, 2010, 20, 1037-1046.	1.9	96
68	Defining age limits of the sensitive period for attachment learning in rat pups. Developmental Psychobiology, 2010, 52, 453-464.	1.6	65
69	Rodent model of infant attachment learning and stress. Developmental Psychobiology, 2010, 52, 651-660.	1.6	104
70	Transitions in sensitive period attachment learning in infancy: The role of corticosterone. Neuroscience and Biobehavioral Reviews, 2010, 34, 835-844.	6.1	102
71	Developing a Neurobehavioral Animal Model of Infant Attachment to an Abusive Caregiver. Biological Psychiatry, 2010, 67, 1137-1145.	1.3	164
72	Fear in love: attachment, abuse, and the developing brain. Cerebrum: the Dana Forum on Brain Science, 2010, 2010, 17.	0.1	4

#	Article	IF	CITATIONS
73	Enduring Neurobehavioral Effects of Early Life Trauma Mediated Through Learning and Corticosterone Suppression. Frontiers in Behavioral Neuroscience, 2009, 3, 22.	2.0	49
74	Auditory Stimulation Dishabituates Olfactory Responses via Noradrenergic Cortical Modulation. Neural Plasticity, 2009, 2009, 1-6.	2.2	17
75	Ontogeny of odor-LiCl vs. odor-shock learning: Similar behaviors but divergent ages of functional amygdala emergence. Learning and Memory, 2009, 16, 114-121.	1.3	66
76	Transitions in infant learning are modulated by dopamine in the amygdala. Nature Neuroscience, 2009, 12, 1367-1369.	14.8	105
77	Early-Life Stress Disrupts Attachment Learning: The Role of Amygdala Corticosterone, Locus Ceruleus Corticotropin Releasing Hormone, and Olfactory Bulb Norepinephrine. Journal of Neuroscience, 2009, 29, 15745-15755.	3.6	169
78	Memory and Plasticity in the Olfactory System. Frontiers in Neuroscience, 2009, , 367-394.	0.0	6
79	Developmental emergence of fear learning corresponds with changes in amygdala synaptic plasticity. Brain Research, 2008, 1200, 58-65.	2.2	88
80	Neonatal odor-shock conditioning alters the neural network involved in odor fear learning at adulthood. Learning and Memory, 2008, 15, 649-656.	1.3	47
81	Maternal attenuation of hypothalamic paraventricular nucleus norepinephrine switches avoidance learning to preference learning in preweanling rat pups. Hormones and Behavior, 2007, 52, 391-400.	2.1	73
82	Enduring Effects of Infant Memories: Infant Odor-Shock Conditioning Attenuates Amygdala Activity and Adult Fear Conditioning. Biological Psychiatry, 2007, 62, 1070-1079.	1.3	69
83	Long-term colonic hypersensitivity in adult rats induced by neonatal unpredictable vs predictable shock. Neurogastroenterology and Motility, 2007, 19, 761-768.	3.0	62
84	Dual Circuitry for Odor-Shock Conditioning during Infancy: Corticosterone Switches between Fear and Attraction via Amygdala. Journal of Neuroscience, 2006, 26, 6737-6748.	3.6	204
85	Maternal presence serves as a switch between learning fear and attraction in infancy. Nature Neuroscience, 2006, 9, 1004-1006.	14.8	321
86	Examining the role of endogenous opioids in learned odor-stroke associations in infant rats. Developmental Psychobiology, 2006, 48, 71-78.	1.6	36
87	The international society for developmental psychobiology annual meeting symposium: Impact of early life experiences on brain and behavioral development. Developmental Psychobiology, 2006, 48, 583-602.	1.6	87
88	Development switch in neural circuitry underlying odor-malaise learning. Learning and Memory, 2006, 13, 801-808.	1.3	40
89	Opioid modulation of Fos protein expression and olfactory circuitry plays a pivotal role in what neonates remember. Learning and Memory, 2006, 13, 590-598.	1.3	17
90	Neurobiology of infant attachment. Developmental Psychobiology, 2005, 47, 230-242.	1.6	148

#	Article	IF	CITATIONS
91	Developmental Changes in Olfactory Behavior and Limbic Circuitry. Chemical Senses, 2005, 30, i152-i153.	2.0	10
92	Memory of early maltreatment: Neonatal behavioral and neural correlates of maternal maltreatment within the context of classical conditioning. Biological Psychiatry, 2005, 57, 823-831.	1.3	175
93	Acetylcholine and Olfactory Perceptual Learning. Learning and Memory, 2004, 11, 28-34.	1.3	103
94	Corticosterone controls the developmental emergence of fear and amygdala function to predator odors in infant rat pups. International Journal of Developmental Neuroscience, 2004, 22, 415-422.	1.6	124
95	Unique Neural Circuitry for Neonatal Olfactory Learning. Journal of Neuroscience, 2004, 24, 1182-1189.	3.6	145
96	Plasticity in the Olfactory System: Lessons for the Neurobiology of Memory. Neuroscientist, 2004, 10, 513-524.	3.5	167
97	Corticosterone Influences on Mammalian Neonatal Sensitive-Period Learning Behavioral Neuroscience, 2004, 118, 274-281.	1.2	80
98	Neurobehavioral Development of Infant Learning and Memory: Implications for Infant Attachment. Advances in the Study of Behavior, 2004, 34, 103-133.	1.6	8
99	Consolidation and expression of a shock-induced odor preference in rat pups is facilitated by opioids. Physiology and Behavior, 2003, 78, 135-142.	2.1	48
100	Characterizing the functional significance of the neonatal rat vibrissae prior to the onset of whisking. Somatosensory & Motor Research, 2003, 20, 157-162.	0.9	50
101	Molecular Biology Of Early Olfactory Memory. Learning and Memory, 2003, 10, 1-4.	1.3	48
102	Developing a Sense of Safety. Annals of the New York Academy of Sciences, 2003, 1008, 122-131.	3.8	42
103	Developing a Sense of Safety: The Neurobiology of Neonatal Attachment. Annals of the New York Academy of Sciences, 2003, 1008, 122-131.	3.8	82
104	Unique characteristics of neonatal classical conditioning: The role of the amygdala and locus coeruleus. Integrative Psychological and Behavioral Science, 2001, 36, 293-307.	0.3	43
105	Endogenous opioids and their role in odor preference acquisition and consolidation following odor–shock conditioning in infant rats. Developmental Psychobiology, 2001, 39, 188-198.	1.6	60
106	Association of an odor with an activation of olfactory bulb noradrenergic β-receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats Behavioral Neuroscience, 2000, 114, 957-962.	1.2	160
107	Good memories of bad events in infancy. Nature, 2000, 407, 38-39.	27.8	299
108	Vibrissae-Evoked Behavior and Conditioning before Functional Ontogeny of the Somatosensory Vibrissae Cortex. Journal of Neuroscience, 1999, 19, 5131-5137.	3.6	36

#	Article	IF	CITATIONS
109	Norepinephrine and associative conditioning in the neonatal rat somatosensory system. Developmental Brain Research, 1999, 114, 261-264.	1.7	16
110	Respiratory Airflow Pattern at the Rat's Snout and an Hypothesis Regarding Its Role in Olfaction. Physiology and Behavior, 1999, 66, 41-44.	2.1	46
111	Clinical Usefulness of Maternal Odor in Newborns: Soothing and Feeding Preparatory Responses. Neonatology, 1998, 74, 402-408.	2.0	115
112	Learning-induced Changes in Rat Piriform Cortex Activity Mapped Using Multisite Recording With Voltage Sensitive Dye. European Journal of Neuroscience, 1997, 9, 1593-1602.	2.6	97
113	Early locus coeruleus lesions increase the density of β-adrenergic receptors in the main olfactory bulb of rats. International Journal of Developmental Neuroscience, 1996, 14, 913-919.	1.6	16
114	NMDA-Receptor modulation of lateral inhibition and c-fos expression in olfactory bulb. Brain Research, 1996, 719, 62-71.	2.2	27
115	Dissociation of behavioral and neural correlates of early associative learning. Developmental Psychobiology, 1995, 28, 213-219.	1.6	38
116	Bilateral 6-OHDA lesions of the locus coeruleus impair associative olfactory learning in newborn rats. Brain Research, 1994, 643, 306-309.	2.2	80
117	Neurobiology of associative learning in the neonate: Early olfactory learning. Behavioral and Neural Biology, 1994, 61, 1-18.	2.2	194
118	The locus coeruleus, norepinephrine, and memory in newborns. Brain Research Bulletin, 1994, 35, 467-472.	3.0	75
119	Norepinephrine and posttraining memory consolidation in neonatal rats Behavioral Neuroscience, 1994, 108, 1053-1058.	1.2	26
120	Norepinephrine and posttraining memory consolidation in neonatal rats Behavioral Neuroscience, 1994, 108, 1053-1058.	1.2	12
121	Serotonergic influence on olfactory learning in the neonate rat. Behavioral and Neural Biology, 1993, 60, 152-162.	2.2	90
122	Neural correlates of memory for odor detection conditioning in adult rats. Neuroscience Letters, 1993, 163, 36-40.	2.1	19
123	Role of the amygdala complex in early olfactory associative learning Behavioral Neuroscience, 1993, 107, 254-263.	1.2	57
124	Role of the amygdala complex in early olfactory associative learning Behavioral Neuroscience, 1993, 107, 254-263.	1.2	30
125	The role of olfactory bulb norepinephrine in early olfactory learning. Developmental Brain Research, 1992, 70, 279-282.	1.7	119
126	Blockade of mitral/tufted cell habituation to odors by association with reward: a preliminary note. Brain Research, 1992, 594, 143-145.	2.2	35

8

#	Article	IF	CITATIONS
127	Norepinephrine-induced plasticity and one-trial olfactory learning in neonatal rats. Developmental Brain Research, 1991, 60, 219-228.	1.7	107
128	Neural correlates of conditioned odor avoidance in infant rats Behavioral Neuroscience, 1991, 105, 307-312.	1.2	56
129	Olfactory associative conditioning in infant rats with brain stimulation as reward: II. Norepinephrine mediates a specific component of the bulb response to reward Behavioral Neuroscience, 1991, 105, 843-849.	1.2	44
130	Olfactory Classical Conditioning in Neonates. Pediatrics, 1991, 87, 511-518.	2.1	140
131	Olfactory associative conditioning in infant rats with brain stimulation as reward. I. Neurobehavioral consequences. Developmental Brain Research, 1990, 53, 215-221.	1.7	36
132	Modified behavioral and olfactory bulb responses to maternal odors in preweanling rats. Developmental Brain Research, 1990, 53, 243-247.	1.7	81
133	Associative processes in early olfactory preference acquisition: Neural and behavioral consequences. Cognitive, Affective and Behavioral Neuroscience, 1989, 17, 29-33.	1.3	27
134	Reinforcers in infancy: Classical conditioning using stroking or intra-oral infusions of milk as UCS. Developmental Psychobiology, 1988, 21, 215-223.	1.6	105
135	Physical stimulation reduces the body temperature of infant rats. Developmental Psychobiology, 1988, 21, 225-235.	1.6	25
136	Physical stimulation reduces the brain temperature of infant rats. Developmental Psychobiology, 1988, 21, 237-250.	1.6	18
137	Behavioral and neural correlates of postnatal olfactory conditioning: II. Respiration during conditioning. Developmental Psychobiology, 1988, 21, 591-600.	1.6	12
138	Behavioral and neural correlates of postnatal olfactory conditioning: I. Effect of respiration on conditioned neural responses. Physiology and Behavior, 1988, 44, 85-90.	2.1	23
139	One-trial olfactory learning enhances olfactory bulb responses to an appetitive conditioned odor in 7-day-old rats. Developmental Brain Research, 1987, 35, 307-311.	1.7	72
140	Early olfactory learning induces an enhanced olfactory bulb response in young rats. Developmental Brain Research, 1986, 27, 278-282.	1.7	153
141	Olfactory-guided orientation in neonatal rats is enhanced by a conditioned change in behavioral state. Developmental Psychobiology, 1986, 19, 615-623.	1.6	132
142	Huddling and independent feeding of neonatal rats can be facilitated by a conditioned change in behavioral state. Developmental Psychobiology, 1986, 19, 625-635.	1.6	73