
## Sebastian Dormido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3547471/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Asymmetric delayed relay feedback identification based on the <i>n</i> -shifting approach.<br>International Journal of Control, 2024, 97, 59-71.                                                              | 1.9 | 1         |
| 2  | UAV Landing Platform Recognition Using Cognitive Computation Combining Geometric Analysis and Computer Vision Techniques. Cognitive Computation, 2023, 15, 392-412.                                           | 5.2 | 2         |
| 3  | Estado del arte de la educación en automática. RIAI - Revista Iberoamericana De Automatica E<br>Informatica Industrial, 2022, 19, 117-131.                                                                    | 1.0 | 9         |
| 4  | Characterization of Limit Cycle Oscillations Induced by Fixed Threshold Samplers. IEEE Access, 2022, 10, 62581-62596.                                                                                         | 4.2 | 3         |
| 5  | An Interactive Software Tool to Learn/Teach Robust Closed-Loop Shaping Control Systems Design. IEEE<br>Access, 2021, 9, 125805-125821.                                                                        | 4.2 | 1         |
| 6  | PID Control. , 2021, , 1724-1733.                                                                                                                                                                             |     | 0         |
| 7  | Distributed Formation Control for Multiagent Systems Using a Fractional-Order<br>Proportional–Integral Structure. IEEE Transactions on Control Systems Technology, 2021, 29,<br>2738-2745.                    | 5.2 | 14        |
| 8  | Stability and Synchronization of Switched Multi-Rate Recurrent Neural Networks. IEEE Access, 2021, 9,<br>45614-45621.                                                                                         | 4.2 | 1         |
| 9  | Fitting of Generic Process Models by an Asymmetric Short Relay Feedback Experiment—The n-Shifting<br>Method. Applied Sciences (Switzerland), 2021, 11, 1651.                                                  | 2.5 | 10        |
| 10 | Un enfoque interactivo para el análisis y diseño de sistemas de control utilizando el método del lugar<br>de las raAces. RIAI - Revista Iberoamericana De Automatica E Informatica Industrial, 2021, 18, 176. | 1.0 | 4         |
| 11 | A Control Engineering Framework for Quadrotors: An Application for the Crazyflie 2.X. , 2021, , .                                                                                                             |     | 1         |
| 12 | A Study of Strategies for Developing Online Laboratories. IEEE Transactions on Learning<br>Technologies, 2021, 14, 777-787.                                                                                   | 3.2 | 12        |
| 13 | Robust switched control of an air levitation system with minimum sensing. ISA Transactions, 2020, 96, 327-336.                                                                                                | 5.7 | 7         |
| 14 | Simulation and Experimental Results of a New Control Strategy For Point Stabilization of<br>Nonholonomic Mobile Robots. IEEE Transactions on Industrial Electronics, 2020, 67, 6679-6687.                     | 7.9 | 24        |
| 15 | A Distributed Vision-Based Navigation System for Khepera IV Mobile Robots. Sensors, 2020, 20, 5409.                                                                                                           | 3.8 | 5         |
| 16 | Evidence-Based Control Engineering Education: Evaluating the LCSD Simulation Tool. IEEE Access, 2020, 8, 170183-170194.                                                                                       | 4.2 | 8         |
| 17 | Reinforcement Learning for Position Control Problem of a Mobile Robot. IEEE Access, 2020, 8, 152941-152951.                                                                                                   | 4.2 | 17        |
| 18 | Event-Based Control: A Bibliometric Analysis of Twenty Years of Research. IEEE Access, 2020, 8,<br>47188-47208.                                                                                               | 4.2 | 20        |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Validity of continuous tuning rules in event-based PI controllers using symmetric send-on-delta sampling: An experimental approach. Computers and Chemical Engineering, 2020, 139, 106878. | 3.8 | 8         |
| 20 | Decoupled feedforward-feedback periodic event-triggered control for disturbance rejection.<br>IFAC-PapersOnLine, 2020, 53, 2708-2713.                                                      | 0.9 | 0         |
| 21 | Position control of a mobile robot using reinforcement learning. IFAC-PapersOnLine, 2020, 53, 17393-17398.                                                                                 | 0.9 | 6         |
| 22 | Validating Continuous Tuning Rules for Event-Based PI Control of Lag-Dominant Processes.<br>IFAC-PapersOnLine, 2020, 53, 2789-2795.                                                        | 0.9 | 0         |
| 23 | An interactive teaching/learning approach to the design of robust linear control systems using the closed-loop shaping methodology. IFAC-PapersOnLine, 2020, 53, 17174-17178.              | 0.9 | 3         |
| 24 | A Master Course on Automatic Control Based on the Use of Online Labs. IFAC-PapersOnLine, 2020, 53, 17542-17547.                                                                            | 0.9 | 4         |
| 25 | H interactive controller design for teaching purposes. IFAC-PapersOnLine, 2020, 53, 17185-17189.                                                                                           | 0.9 | 2         |
| 26 | Learning planar robotics with an open source online laboratory. IFAC-PapersOnLine, 2020, 53, 17222-17227.                                                                                  | 0.9 | 1         |
| 27 | A Practical Approach to Adaptive Sliding Mode Control. International Journal of Control,<br>Automation and Systems, 2019, 17, 2452-2461.                                                   | 2.7 | 5         |
| 28 | A new architecture for the design of virtual/remote labs: The coupled drives system as a case of study. , 2019, , .                                                                        |     | 8         |
| 29 | The Air Levitation System. IFAC-PapersOnLine, 2019, 52, 33-35.                                                                                                                             | 0.9 | 2         |
| 30 | Using Server-Sent Events for Event-Based Control in Networked Control Systems. IFAC-PapersOnLine, 2019, 52, 260-265.                                                                       | 0.9 | 3         |
| 31 | Using Server-Sent Events for Event-Based Control Laboratory Practices in Distance and Blended Learning. , 2019, , .                                                                        |     | 3         |
| 32 | Identification and Tuning Methods for PI Control Systems Based on Symmetric Send-on-delta Sampling.<br>International Journal of Control, Automation and Systems, 2019, 17, 2784-2795.      | 2.7 | 7         |
| 33 | Development of an Easy-to-Use Multi-Agent Platform for Teaching Mobile Robotics. IEEE Access, 2019, 7, 55885-55897.                                                                        | 4.2 | 26        |
| 34 | A Master Course on Automatic Control with Remote Labs. IFAC-PapersOnLine, 2019, 52, 48-49.                                                                                                 | 0.9 | 5         |
| 35 | On Teaching Digital Control Systems in a Generic Engineering Degree. IFAC-PapersOnLine, 2019, 52,<br>103-108.                                                                              | 0.9 | 4         |
| 36 | Automated Assessment and Monitoring Support for Competency-Based Courses. IEEE Access, 2019, 7, 41043-41051.                                                                               | 4.2 | 18        |

| #  | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Event–Based Feedforward Control of Linear Systems with input Time–Delay. International Journal of<br>Applied Mathematics and Computer Science, 2019, 29, 541-553.                                                                                                                                | 1.5 | 3         |
| 38 | Closed-Loop Shaping Linear Control System Design: An Interactive Teaching/Learning Approach [Focus on Education]. IEEE Control Systems, 2019, 39, 58-74.                                                                                                                                         | 0.8 | 16        |
| 39 | Enhanced Event-Based Identification Procedure for Process Control. Industrial & Engineering Chemistry Research, 2018, 57, 7218-7231.                                                                                                                                                             | 3.7 | 16        |
| 40 | A model-based control scheme for depth of hypnosis in anesthesia. Biomedical Signal Processing and<br>Control, 2018, 42, 216-229.                                                                                                                                                                | 5.7 | 25        |
| 41 | A survey of good practice in control education. European Journal of Engineering Education, 2018, 43, 801-823.                                                                                                                                                                                    | 2.3 | 46        |
| 42 | Teaching, Analyzing, Designing and Interactively Simulating Sliding Mode Control. IEEE Access, 2018, 6, 16783-16794.                                                                                                                                                                             | 4.2 | 8         |
| 43 | Identification of process transfer function parameters in event-based PI control loops. ISA<br>Transactions, 2018, 75, 157-171.                                                                                                                                                                  | 5.7 | 22        |
| 44 | Asynchronous periodic event-triggered control with dynamical controllers. Journal of the Franklin<br>Institute, 2018, 355, 3455-3469.                                                                                                                                                            | 3.4 | 9         |
| 45 | Web Experimentation on Virtual and Remote Laboratories. Lecture Notes in Networks and Systems, 2018, , 205-219.                                                                                                                                                                                  | 0.7 | 0         |
| 46 | Navigation control of the Khepera IV model with OpenCV in V-REP simulator. , 2018, , .                                                                                                                                                                                                           |     | 3         |
| 47 | First Principles System Level Modelling of TCP-100 Facility for Simulation of Operation Modes ⎠âŽThe<br>authors thanks to the Spanish Ministerio de EconomÃa, Industria y Competitividad for partially<br>funding this work IFAC-PapersOnLine, 2018, 51, 481-486.                                | 0.9 | 2         |
| 48 | New Interactive Books for Control Education ⎠âŽThis work has been partially funded by the IEEE Control                                                                                                                                                                                           | 0.9 | 5         |
| 49 | Experimental Study of Nonlinear PID Controllers in an Air Levitation System. IFAC-PapersOnLine, 2018, 51, 304-309.                                                                                                                                                                               | 0.9 | 12        |
| 50 | Online Virtual Control Laboratory of Mobile Robots. IFAC-PapersOnLine, 2018, 51, 316-321.                                                                                                                                                                                                        | 0.9 | 10        |
| 51 | The use of interactivity in the controller design: Loop shaping versus closed-loop shaping.<br>IFAC-PapersOnLine, 2018, 51, 334-339.                                                                                                                                                             | 0.9 | 3         |
| 52 | An Improved Relay-based Identification Approach based on Asymmetric Oscillations. IFAC-PapersOnLine, 2018, 51, 468-473.                                                                                                                                                                          | 0.9 | 3         |
| 53 | Two-degree-of-freedom control scheme for depth of hypnosis in anesthesia az az this work has been partially funded by the following projects: DPI2014-55932-C2-1-R, DPI2014-55932-C2-2-R, DPI2014-56364-C2-1-R and DPI2012-31303 financed by the Spanish Ministry of Economy and Competitiveness | 0.9 | 8         |
| 54 | 72-77.<br>Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices. IEEE Access, 2018,<br>6, 72345-72356.                                                                                                                                                             | 4.2 | 5         |

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Open-Source Hardware in Education: A Systematic Mapping Study. IEEE Access, 2018, 6, 72094-72103.                                                                         | 4.2 | 22        |
| 56 | Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays. Sensors, 2018, 18, 1491.                                                                        | 3.8 | 6         |
| 57 | Application of Predictive Feedforward Compensator to Microalgae Production in a Raceway Reactor:<br>A Simulation Study. Energies, 2018, 11, 123.                          | 3.1 | 8         |
| 58 | New Control Paradigms for Resources Saving: An Approach for Mobile Robots Navigation. Sensors, 2018, 18, 281.                                                             | 3.8 | 5         |
| 59 | A Neural Network Approach for Building An Obstacle Detection Model by Fusion of Proximity Sensors<br>Data. Sensors, 2018, 18, 683.                                        | 3.8 | 22        |
| 60 | Recognition of a landing platform for unmanned aerial vehicles by using computer vision-based techniques. Expert Systems With Applications, 2017, 76, 152-165.            | 7.6 | 27        |
| 61 | Nonlinear adaptive sliding mode control with fast non-overshooting responses and chattering avoidance. Journal of the Franklin Institute, 2017, 354, 2788-2815.           | 3.4 | 31        |
| 62 | Optimal Threshold Setting for Event-Based Control Strategies. IEEE Access, 2017, 5, 2880-2893.                                                                            | 4.2 | 7         |
| 63 | The experiment editor: supporting inquiry-based learning with virtual labs. European Journal of Physics, 2017, 38, 035702.                                                | 0.6 | 12        |
| 64 | Anytime Optimal Control Strategy for Multi-Rate Systems. IEEE Access, 2017, 5, 2790-2797.                                                                                 | 4.2 | 4         |
| 65 | An Interactive and Comprehensive Software Tool to Promote Active Learning in the Loop Shaping<br>Control System Design. IEEE Access, 2017, 5, 10533-10546.                | 4.2 | 18        |
| 66 | A unified event-based control approach for FOPTD and IPTD processes based on the filtered Smith predictor. Journal of the Franklin Institute, 2017, 354, 1239-1264.       | 3.4 | 15        |
| 67 | Event-Based GPC for Multivariable Processes: A Practical Approach With Sensor Deadband. IEEE<br>Transactions on Control Systems Technology, 2017, 25, 1621-1633.          | 5.2 | 7         |
| 68 | Virtual and Remote Laboratory with the Ball and Plate System. IFAC-PapersOnLine, 2017, 50, 9132-9137.                                                                     | 0.9 | 17        |
| 69 | Conducting Online Lab Experiments with Blockly. IFAC-PapersOnLine, 2017, 50, 13474-13479.                                                                                 | 0.9 | 6         |
| 70 | An Object-Oriented Library for Process Control Simulations in MATLAB. IFAC-PapersOnLine, 2017, 50, 15686-15691.                                                           | 0.9 | 2         |
| 71 | Adaptive Weighing System With Fast Nonstationary Filtering and Centrifugal Force Compensation. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 3210-3217. | 4.7 | 5         |
|    |                                                                                                                                                                           |     |           |

72 Blockly experiments for EjsS laboratories. , 2017, , .

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Event-Based Control Systems for Microalgae Culture in Industrial Reactors. , 2017, , 1-48.                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 5         |
| 74 | Evaluation of event-based irrigation system control scheme for tomato crops in greenhouses.<br>Agricultural Water Management, 2017, 183, 16-25.                                                                                                                                                                                                                                                                                                                                                                                  | 5.6 | 41        |
| 75 | A low-cost embedded controller design for selective spraying vehicle * *This work has been partially funded by the following projects: DPI2014-55932-C2-1-R, DPI2014-55932-C2-2-R, DPI2014-56364-C2-1-R and and the UNED through a postdoctoral scholarship IFAC-PapersOnLine, 2017, 50, 5404-5409.                                                                                                                                                                                                                              | 0.9 | 1         |
| 76 | A Khepera IV library for robotic control education using V-REP. IFAC-PapersOnLine, 2017, 50, 5404-5409.                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9 | 20        |
| 77 | An open software - open hardware lab of the air levitation system. IFAC-PapersOnLine, 2017, 50,<br>9168-9173.                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9 | 9         |
| 78 | Predictive feedforward compensator for dead-time processes * *This work has been partially funded by the following projects: DPI2014-55932-C2-1-R, DPI2014-55932-C2-2-R, DPI2014-56364-C2-1-R and                                                                                                                                                                                                                                                                                                                                | 0.9 | 2         |
| 79 | and the UNED through a postdoctoral scholarship., IFAC-PapersOnLine, 2017, 50, 1239-1244.<br>Aranda-EscolÃ <sub>1</sub> stico, M. Guinaldo and S. Dormido supported by Spanish Ministry of Economy and<br>Competitiveness under projects DPI2012-31303 and DPI2014-55932-C2-2-R and by the Universidad Nacional<br>de EducaciÃ <sup>3</sup> n a Distancia under the project 2014-007-UNED-PROY.M. Abdelrahim and W.P.M.H. Heemels<br>are supported by the Dutch Science Foundation (STW) and the Dutch Organization for Scientic | 0.9 | 8         |
| 80 | Research (NWO) under the VICI gr. IFAC-PapersOnLine, 2017, 50, 7887-7892.<br>Event-based GPC for depth of hypnosis in anesthesia for efficient use of propofol. , 2017, , .                                                                                                                                                                                                                                                                                                                                                      |     | 6         |
| 81 | Keynote 2: "Virtual and remote laboratories in control as a mean to provide experimentation activities<br>in distance and blended learning scenarios― , 2017, , .                                                                                                                                                                                                                                                                                                                                                                |     | 0         |
| 82 | Two Mobile Robots Platforms for Experimentation: Comparison and Synthesis. , 2017, , .                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 2         |
| 83 | Measurable Disturbances Compensation: Analysis and Tuning of Feedforward Techniques for<br>Dead-Time Processes. Processes, 2016, 4, 12.                                                                                                                                                                                                                                                                                                                                                                                          | 2.8 | 6         |
| 84 | Performance improvement of SISO linear control systems by hybrid state resetting and sector confinement of trajectories. International Journal of Robust and Nonlinear Control, 2016, 26, 4008-4034.                                                                                                                                                                                                                                                                                                                             | 3.7 | 4         |
| 85 | What remote labs can do for you. Physics Today, 2016, 69, 48-53.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3 | 43        |
| 86 | ITTSAE: A Set of Interactive Software Tools for Time Series Analysis Education [Lecture Notes]. IEEE<br>Control Systems, 2016, 36, 112-120.                                                                                                                                                                                                                                                                                                                                                                                      | 0.8 | 4         |
| 87 | Automated experiments on EjsS laboratories. , 2016, , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 2         |
| 88 | A new model for a remote connection with hardware devices using Javascript. , 2016, , .                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 1         |
| 89 | Virtual Control Labs Experimentation: The Water Tank System. IFAC-PapersOnLine, 2016, 49, 87-92.                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 | 7         |
| 90 | A new Model for a Remote Connection with Hardware Devices using Javascript**This work was supported in part by the Spanish Ministry of Economy and Competitiveness under Project DPI2012-31303 IFAC-PapersOnLine, 2016, 49, 133-137.                                                                                                                                                                                                                                                                                             | 0.9 | 3         |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Updated Website and Links Repository of the IFAC's TC 9.4. IFAC-PapersOnLine, 2016, 49, 162-167.<br>Event-based selective control strategy for raceway reactor: A simulation study**This work has been    | 0.9 | Ο         |
| 92 | Event-based selective control strategy for raceway reactor: A simulation study**This work has been supported by Cajamar Foundation and partially funded by the following projects: DPI2014- 55932-C2-1-R, |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |
|    |                                                                                                                                                                                                           |     |           |

| #   | Article                                                                                                                                                                                                                                                                                                          | IF           | CITATIONS      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
| 109 | Adding automatic evaluation to interactive virtual labs. Interactive Learning Environments, 2016, 24, 1456-1476.                                                                                                                                                                                                 | 6.4          | 11             |
| 110 | Platform for Teaching Mobile Robotics. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 81, 131-143.                                                                                                                                                                                   | 3.4          | 31             |
| 111 | Performing Automated Experiments with EJsS Laboratories. IFAC-PapersOnLine, 2015, 48, 134-139.                                                                                                                                                                                                                   | 0.9          | 0              |
| 112 | ITADLS: An Interactive Tool for Analysis and Design of Linear Systems. IFAC-PapersOnLine, 2015, 48, 253-258.                                                                                                                                                                                                     | 0.9          | 10             |
| 113 | Virtual Laboratory of the Ball and Plate System. IFAC-PapersOnLine, 2015, 48, 152-157.                                                                                                                                                                                                                           | 0.9          | 12             |
| 114 | An Architecture to use Easy Java-Javascript Simulations in New Devices**Sponsor and financial support<br>acknowledgment goes here. Paper titles should be written in uppercase and lowercase letters, not all<br>uppercase IFAC-PapersOnLine, 2015, 48, 129-133.                                                 | 0.9          | 8              |
| 115 | Nonlinear experiments : a saturation example. IFAC-PapersOnLine, 2015, 48, 200-204.                                                                                                                                                                                                                              | 0.9          | 1              |
| 116 | A novel approach for periodic event-triggering based on general quadratic functions. , 2015, , .                                                                                                                                                                                                                 |              | 10             |
| 117 | An interactive tool to introduce the waterbed effect. IFAC-PapersOnLine, 2015, 48, 259-264.                                                                                                                                                                                                                      | 0.9          | 3              |
| 118 | A new generation of online laboratories for teaching automatic control**This work has been funded by the National Plan Projects DPI2011-27818-C02-02 and DPI2012-31303 of the Spanish Ministry of Science and Innovation and FEDER funds IFAC-PapersOnLine, 2015, 48, 140-145.                                   | 0.9          | 5              |
| 119 | Event-Based Control Strategy for Mobile Robots in Wireless Environments. Sensors, 2015, 15, 30076-30092.                                                                                                                                                                                                         | 3.8          | 22             |
| 120 | A Robust <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"&gt;<mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>â^ž<br/>for an UAV Flight Control System. Scientific World Journal, The, 2015, 2015, 1-11.</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> | <b m2_ml:mi: | > <b 18ml:mrow |
| 121 | Closed-Loop Automatic Tuning Technique for an Event-Based PI Controller. Industrial &<br>Engineering Chemistry Research, 2015, 54, 6362-6370.                                                                                                                                                                    | 3.7          | 14             |
| 122 | Event-based GPC for multivariable processes. , 2015, , .                                                                                                                                                                                                                                                         |              | 1              |
| 123 | Stability of output event-based control systems through quadratic trigger functions. , 2015, , .                                                                                                                                                                                                                 |              | 6              |
| 124 | Remote Interoperability Protocol: A bridge between interactive interfaces and engineering<br>systems**This work has been funded by the National Plan Project DPI2012- 31303 of the Spanish Ministry<br>of Science and Innovation and FEDER funds IFAC-PapersOnLine, 2015, 48, 247-252.                           | 0.9          | 10             |
| 125 | Event-based control for IPTD processes with simple tuning methods. , 2015, , .                                                                                                                                                                                                                                   |              | 1              |
| 126 | Open and Low-Cost Virtual and Remote Labs on Control Engineering. IEEE Access, 2015, 3, 805-814.                                                                                                                                                                                                                 | 4.2          | 109            |

| #   | Article                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | An Event-based PI controller autotuning technique for integral processes. , 2015, , .                                                                                |      | 5         |
| 128 | Fast nonstationary filtering for adaptive weighing system. , 2015, , .                                                                                               |      | 5         |
| 129 | Interactivity-based control education: Some experiences at the University of Córdoba.<br>IFAC-PapersOnLine, 2015, 48, 37-42.                                         | 0.9  | 7         |
| 130 | Understanding closed-loop identification with ITCLI. IFAC-PapersOnLine, 2015, 48, 739-744.                                                                           | 0.9  | 4         |
| 131 | Interactive Education for Time-Domain Time Series Analysis using ITTSAE. IFAC-PapersOnLine, 2015, 48, 751-756.                                                       | 0.9  | 1         |
| 132 | EJS, JIL Server, and LabVIEW: An Architecture for Rapid Development of Remote Labs. IEEE Transactions on Learning Technologies, 2015, 8, 393-401.                    | 3.2  | 50        |
| 133 | The Ball and Beam System: A Case Study of Virtual and Remote Lab Enhancement With Moodle. IEEE Transactions on Industrial Informatics, 2015, 11, 934-945.            | 11.3 | 94        |
| 134 | Networked Mobile Robots: An Application Example of the Distributed Event-Based Control. , 2015, , 257-287.                                                           |      | 1         |
| 135 | Characterization and tuning of predictive SSOD-PI controllers. , 2015, , .                                                                                           |      | 1         |
| 136 | Selective pH and dissolved oxygen control strategy for a raceway reactor within an event-based approach. Control Engineering Practice, 2015, 44, 209-218.            | 5.5  | 42        |
| 137 | A virtual and remote lab of the two electric coupled drives system in the University Network of Interactive Laboratories. , 2015, , .                                |      | 4         |
| 138 | Event-based control strategy for the guidance of the Aerosonde UAV. , 2015, , .                                                                                      |      | 5         |
| 139 | Switching moving boundary models for two-phase flow evaporators and condensers.<br>Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 743-768.  | 3.3  | 36        |
| 140 | 3D Positioning Algorithm for Low Cost Mobile Robots. , 2015, , .                                                                                                     |      | 1         |
| 141 | Event-Based PI Plus Feedforward Control Strategies for a Distributed Solar Collector Field. IEEE<br>Transactions on Control Systems Technology, 2014, 22, 1615-1622. | 5.2  | 25        |
| 142 | A Multirate Control Strategy to the Slow Sensors Problem: An Interactive Simulation Tool for Controller Assisted Design. Sensors, 2014, 14, 4086-4110.               | 3.8  | 16        |
| 143 | Design of event-based PI-P controllers using interactive tools. Control Engineering Practice, 2014, 32, 183-202.                                                     | 5.5  | 9         |
| 144 | An Interactive Tool for Outdoor Computer Controlled Cultivation of Microalgae in a Tubular<br>Photobioreactor System. Sensors, 2014, 14, 4466-4483.                  | 3.8  | 16        |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Tuning of symmetric sendâ€onâ€delta proportional–integral controllers. IET Control Theory and Applications, 2014, 8, 248-259.                                                          | 2.1 | 35        |
| 146 | Lagrange interpolation for signal reconstruction in event-based GPC. , 2014, , .                                                                                                       |     | 2         |
| 147 | Experimental analysis of a remote event-based PID controller in a flexible link system. , 2014, , .                                                                                    |     | 4         |
| 148 | FUZZY LOGIC VS ANALYTIC CONTROLLERS ON A NON-LINEAR SYSTEM. , 2014, , .                                                                                                                |     | 1         |
| 149 | Anticipative control design for output measurement in Internet-like Networks. , 2014, , .                                                                                              |     | 2         |
| 150 | PID Control. , 2014, , 1-11.                                                                                                                                                           |     | 0         |
| 151 | A SCORM based package model for WebLabs. , 2014, , .                                                                                                                                   |     | 2         |
| 152 | Reset control systems with reset band: Well-posedness, limit cycles and stability analysis. Systems and Control Letters, 2014, 63, 1-11.                                               | 2.3 | 33        |
| 153 | Making EJS applications at the OSP digital library available from Moodle. , 2014, , .                                                                                                  |     | 5         |
| 154 | Two degree-of-freedom design for a send-on-delta sampling PI control strategy. Control Engineering<br>Practice, 2014, 30, 55-66.                                                       | 5.5 | 9         |
| 155 | Effective utilization of flue gases in raceway reactor with event-based pH control for microalgae culture. Bioresource Technology, 2014, 170, 1-9.                                     | 9.6 | 64        |
| 156 | Distributed event-triggered control for non-reliable networks. Journal of the Franklin Institute, 2014, 351, 5250-5273.                                                                | 3.4 | 32        |
| 157 | A practical tuning methodology for event-based PI control. Journal of Process Control, 2014, 24, 278-295.                                                                              | 3.3 | 16        |
| 158 | Distributed parameter estimation for adaptive event-triggered control. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2014, 47, 11685-11690.          | 0.4 | 2         |
| 159 | Opportunities and good practice in control education: a survey. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2014, 47, 10568-10573.                 | 0.4 | 19        |
| 160 | ITCLI : An Interactive Tool for Closed-Loop Identification. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 12249-12254.                        | 0.4 | 6         |
| 161 | Event-based predictive control triggered by input and output deadband conditions. IFAC Postprint<br>Volumes IPPV / International Federation of Automatic Control, 2014, 47, 8116-8121. | 0.4 | 0         |
| 162 | Event-based PI controller with exponential thresholds. IFAC Postprint Volumes IPPV / International<br>Federation of Automatic Control, 2014, 47, 5766-5771.                            | 0.4 | 3         |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | An experimental framework to analyze limit cycles generated by event-based sampling. IFAC Postprint<br>Volumes IPPV / International Federation of Automatic Control, 2014, 47, 9051-9056. | 0.4 | 4         |
| 164 | Understanding PID design through interactive tools. IFAC Postprint Volumes IPPV / International<br>Federation of Automatic Control, 2014, 47, 12243-12248.                                | 0.4 | 17        |
| 165 | Event-based controller for noisy environments. , 2014, , .                                                                                                                                |     | 1         |
| 166 | Web 2.0 Open Remote and Virtual Laboratories in Engineering Education. , 2014, , 559-580.                                                                                                 |     | 3         |
| 167 | Development of an industrial boiler virtualâ€lab for control education using Modelica. Computer<br>Applications in Engineering Education, 2013, 21, 36-45.                                | 3.4 | 12        |
| 168 | Interactivity in education: An experience in the automatic control field. Computer Applications in Engineering Education, 2013, 21, 360-371.                                              | 3.4 | 47        |
| 169 | Virtual and Remote Robotic Laboratory Using EJS, MATLAB and LabVIEW. Sensors, 2013, 13, 2595-2612.                                                                                        | 3.8 | 79        |
| 170 | Hybrid system modeling using the SIMANLib and ARENALib Modelica libraries. Simulation Modelling<br>Practice and Theory, 2013, 37, 1-17.                                                   | 3.8 | 6         |
| 171 | Characterization of limit cycles for self-regulating and integral processes with PI control and send-on-delta sampling. Journal of Process Control, 2013, 23, 826-838.                    | 3.3 | 22        |
| 172 | Perspectives on control-relevant identification through the use of interactive tools. Control Engineering Practice, 2013, 21, 171-183.                                                    | 5.5 | 15        |
| 173 | A Remote Laboratory as an Innovative Educational Tool for Practicing Control Engineering Concepts.<br>IEEE Transactions on Education, 2013, 56, 436-442.                                  | 2.4 | 60        |
| 174 | Frequency domain properties of reset systems with multiple reset anticipations. IET Control Theory and Applications, 2013, 7, 796-809.                                                    | 2.1 | 4         |
| 175 | Providing collaborative support to virtual and remote laboratories. IEEE Transactions on Learning Technologies, 2013, 6, 312-323.                                                         | 3.2 | 71        |
| 176 | A Mobile Robots Experimental Environment with Event-Based Wireless Communication. Sensors, 2013, 13, 9396-9413.                                                                           | 3.8 | 28        |
| 177 | Distributed eventâ€based control strategies for interconnected linear systems. IET Control Theory and Applications, 2013, 7, 877-886.                                                     | 2.1 | 90        |
| 178 | An automatic tuning procedure for an event-based PI controller. , 2013, , .                                                                                                               |     | 8         |
| 179 | Reducing communication and actuation in distributed control systems. , 2013, , .                                                                                                          |     | 4         |
| 180 | Stability analysis of symmetric send-on-delta event-based control systems. , 2013, , .                                                                                                    |     | 11        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | A Virtual Laboratory for Tubular Photobioreactors for Outdoor Microalgae Culture. IFAC Postprint<br>Volumes IPPV / International Federation of Automatic Control, 2013, 46, 297-302.                                                                             | 0.4 | 1         |
| 182 | A Virtual and Remote Control Laboratory in Moodle: The Ball and Beam System. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 72-77.                                                                                       | 0.4 | 9         |
| 183 | Development of interactive books for Control Education. IFAC Postprint Volumes IPPV / International<br>Federation of Automatic Control, 2013, 46, 150-155.                                                                                                       | 0.4 | 7         |
| 184 | An educational software to develop robot mapping and localization practices using visual<br>information. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46,<br>174-179.                                                      | 0.4 | 0         |
| 185 | Teaching Cascaded Controllers with a Fuel Cell Plant in a Hands-on Laboratory. IFAC Postprint<br>Volumes IPPV / International Federation of Automatic Control, 2013, 46, 203-207.                                                                                | 0.4 | 4         |
| 186 | Dynamic Modeling and Simulation Study of Falling Film Evaporation and Condensation. , 2013, , .                                                                                                                                                                  |     | 0         |
| 187 | Remote pursuer-evader experiments with mobile robots in the Automatic Control Telelab. IFAC<br>Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 66-71.                                                                          | 0.4 | 5         |
| 188 | Building process control simulations with Easy Java Simulations elements. IFAC Postprint Volumes<br>IPPV / International Federation of Automatic Control, 2013, 46, 138-143.                                                                                     | 0.4 | 2         |
| 189 | Practical experiences on a real pumping system emulated by a hardware model and used as a remote laboratory. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 339-344.                                                     | 0.4 | 0         |
| 190 | Improvements in BondLib, the Modelica Bond Graph Library. , 2013, , .                                                                                                                                                                                            |     | 2         |
| 191 | An Optimization Software Tool for Performance/Robustness Analysis and Tuning of PID Controllers.<br>IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 126-131.                                                              | 0.4 | 4         |
| 192 | Experimental study of two event-based PI controllers in a solar distributed collector field. , 2013, , .                                                                                                                                                         |     | 2         |
| 193 | Using Augmented Reality in Remote Laboratories. International Journal of Computers,<br>Communications and Control, 2013, 8, 622.                                                                                                                                 | 1.8 | 15        |
| 194 | A fully autonomous unmanned aerial vehicle landing controller synthesis: quantitative feedback<br>theory and Hâ^ž technique comparison. Proceedings of the Institution of Mechanical Engineers, Part G:<br>Journal of Aerospace Engineering, 2012, 226, 281-293. | 1.3 | 1         |
| 195 | Distributed event-triggered control with network delays and packet losses. , 2012, , .                                                                                                                                                                           |     | 38        |
| 196 | A new two degree-of-freedom event-based PI control strategy. , 2012, , .                                                                                                                                                                                         |     | 1         |
| 197 | Integrated virtual and remote lab for greenhouse climate control. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2012, 45, 264-269.                                                                                             | 0.4 | 0         |
| 198 | Interactive Tools to Learn Basic Concepts of Nonlinear Systems Linearization Through a Case Study*.<br>IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 66-71.                                                             | 0.4 | 7         |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | A New Framework to develop Web-based Interactive Tools for Control Education. IFAC Postprint<br>Volumes IPPV / International Federation of Automatic Control, 2012, 45, 183-188.                                                    | 0.4 | 7         |
| 200 | Synchronous collaboration between auto-generated WebGL applications and 3D virtual laboratories created with Easy Java Simulations. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 160-165. | 0.4 | 3         |
| 201 | Object-Oriented Modeling of Switching Moving Boundary Models for Two-phase Flow Evaporators.<br>IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1069-1074.                                   | 0.4 | 9         |
| 202 | i-pIDtune: An interactive tool for integrated system identification and PID control. IFAC Postprint<br>Volumes IPPV / International Federation of Automatic Control, 2012, 45, 146-151.                                             | 0.4 | 9         |
| 203 | An Interactive Software Tool for the Study of Event-based PI Controller. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2012, 45, 164-169.                                                         | 0.4 | 4         |
| 204 | On the Stability of an Event-based PI Controller for FOPDT processes. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2012, 45, 436-441.                                                            | 0.4 | 4         |
| 205 | Synchronous Collaboration with Virtual and Remote Labs in Moodle. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2012, 45, 270-275.                                                                | 0.4 | 3         |
| 206 | Enhancing Virtual and Remote Labs to Perform Automatic Evaluation. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2012, 45, 276-281.                                                               | 0.4 | 5         |
| 207 | Delay-dependent stability of reset control systems with anticipative reset conditions. IFAC Postprint<br>Volumes IPPV / International Federation of Automatic Control, 2012, 45, 219-224.                                           | 0.4 | 1         |
| 208 | ITCRI: An Interactive Software Tool for Evaluating Control-Relevant Identification*. IFAC Postprint<br>Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1529-1534.                                           | 0.4 | 1         |
| 209 | Characterization of symmetric send-on-delta PI controllers. Journal of Process Control, 2012, 22, 1930-1945.                                                                                                                        | 3.3 | 74        |
| 210 | Analysis of the limit cycles in the PI control of IPD processes with send-on-delta sampling. , 2012, , .                                                                                                                            |     | 2         |
| 211 | Modeling of a two-step solar hydrogen production plant. International Journal of Hydrogen Energy, 2012, 37, 10549-10556.                                                                                                            | 7.1 | 12        |
| 212 | A new Internet tool for automatic evaluation in Control Systems andÂProgramming. Computers and Education, 2012, 59, 535-550.                                                                                                        | 8.3 | 22        |
| 213 | An interactive simulator for networked mobile robots. IEEE Network, 2012, 26, 14-20.                                                                                                                                                | 6.9 | 3         |
| 214 | Tuning rules for event-based SSOD-PI controllers. , 2012, , .                                                                                                                                                                       |     | 6         |
| 215 | Physics Experiments at the UNEDLabs Portal. International Journal of Online and Biomedical Engineering, 2012, 8, 26.                                                                                                                | 1.4 | 6         |
| 216 | An interactive software tool for system identification. Advances in Engineering Software, 2012, 45, 115-123.                                                                                                                        | 3.8 | 36        |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Chattering in dynamic mathematical two-phase flow models. Applied Mathematical Modelling, 2012, 36, 2067-2081.                                                                                                        | 4.2 | 33        |
| 218 | Development of virtual-labs for education in chemical process control using Modelica. Computers and Chemical Engineering, 2012, 39, 170-178.                                                                          | 3.8 | 24        |
| 219 | Modeling of hybrid control systems using the DEVSLib Modelica library. Control Engineering<br>Practice, 2012, 20, 24-34.                                                                                              | 5.5 | 4         |
| 220 | A new 3D visualization Java framework based on physics principles. Computer Physics Communications, 2012, 183, 231-244.                                                                                               | 7.5 | 2         |
| 221 | Parabolic-trough solar thermal power plant simulation scheme, multi-objective genetic algorithm calibration and validation. Solar Energy, 2012, 86, 531-540.                                                          | 6.1 | 47        |
| 222 | Synchronous collaboration of virtual and remote laboratories. Computer Applications in Engineering Education, 2012, 20, 124-136.                                                                                      | 3.4 | 39        |
| 223 | Event-Based PID Control. Advances in Industrial Control, 2012, , 495-526.                                                                                                                                             | 0.5 | 20        |
| 224 | Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators and Condensers. , 2012, , .                                                                                                |     | 8         |
| 225 | AutomatL@bs Consortium. , 2012, , 206-225.                                                                                                                                                                            |     | 15        |
| 226 | Web 2.0 Open Remote and Virtual Laboratories in Engineering Education. Advances in Higher Education and Professional Development Book Series, 2012, , 369-390.                                                        | 0.2 | 2         |
| 227 | Modeling of a falling film evaporator. , 2012, , .                                                                                                                                                                    |     | 3         |
| 228 | Interactive tool for analysis of reset control systems. , 2011, , .                                                                                                                                                   |     | 3         |
| 229 | Two web-based laboratories of the FisL@bs network: Hooke's and Snell's laws. European Journal of Physics, 2011, 32, 571-584.                                                                                          | 0.6 | 33        |
| 230 | On the presence of equilibrium points in PI control systems with send-on-delta sampling. , 2011, , .                                                                                                                  |     | 13        |
| 231 | Developing a remote laboratory for engineering education. Computers and Education, 2011, 57, 1686-1697.                                                                                                               | 8.3 | 118       |
| 232 | Study of fundamental control concepts through interactive learning objects. IFAC Postprint Volumes<br>IPPV / International Federation of Automatic Control, 2011, 44, 7286-7291.                                      | 0.4 | 6         |
| 233 | Enhancing student learning: On-line interactive laboratory for modelling of real world control system applications. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 7268-7273. | 0.4 | 6         |
| 234 | A Remote Laboratory for Mobile Robot Applications. IFAC Postprint Volumes IPPV / International<br>Federation of Automatic Control, 2011, 44, 7280-7285.                                                               | 0.4 | 18        |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Feedforward control concepts through Interactive Tools. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 6361-6366.                             | 0.4 | 6         |
| 236 | ITCRI: An Interactive Software Tool for Control-Relevant Identification Education*. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 6367-6372. | 0.4 | 3         |
| 237 | Interactive Human Interfaces with Engineering Software. IFAC Postprint Volumes IPPV / International<br>Federation of Automatic Control, 2011, 44, 8509-8514.                          | 0.4 | 5         |
| 238 | Co-design strategy of networked control systems for treacherous network conditions. IET Control Theory and Applications, 2011, 5, 1906-1915.                                          | 2.1 | 16        |
| 239 | A Network of Automatic Control Web-Based Laboratories. IEEE Transactions on Learning Technologies, 2011, 4, 197-208.                                                                  | 3.2 | 90        |
| 240 | A heuristic method to minimise the chattering problem in dynamic mathematical two-phase flow models. Mathematical and Computer Modelling, 2011, 54, 1549-1560.                        | 2.0 | 10        |
| 241 | Limit cycles analysis of reset control systems with reset band. Nonlinear Analysis: Hybrid Systems, 2011, 5, 163-173.                                                                 | 3.5 | 18        |
| 242 | A two-degree-of-freedom PI controller based on events. Journal of Process Control, 2011, 21, 639-651.                                                                                 | 3.3 | 90        |
| 243 | EJS+EjsRL: An interactive tool for industrial robots simulation, Computer Vision and remote operation. Robotics and Autonomous Systems, 2011, 59, 389-401.                            | 5.1 | 23        |
| 244 | Design of an event-based feedforward strategy for SOPTD processes. , 2011, , .                                                                                                        |     | 0         |
| 245 | Reset Control Systems with Reset Band: Well-posedness and Limit Cycles Analysis. , 2011, , .                                                                                          |     | 5         |
| 246 | Distributed event-based control for interconnected linear systems. , 2011, , .                                                                                                        |     | 48        |
| 247 | Teaching System Identification Through Interactivity. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 42, 43-48.                                   | 0.4 | Ο         |
| 248 | Web-based Control Laboratory: The Ball and Beam System. IFAC Postprint Volumes IPPV / International<br>Federation of Automatic Control, 2010, 42, 174-179.                            | 0.4 | 3         |
| 249 | An open-source graphical library for the development of Interactive Tools. IFAC Postprint Volumes<br>IPPV / International Federation of Automatic Control, 2010, 42, 37-42.           | 0.4 | 1         |
| 250 | Remote Experimentation Mashup. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 42, 186-191.                                                        | 0.4 | 0         |
| 251 | New features of Easy Java Simulations for 3D Modeling. IFAC Postprint Volumes IPPV / International<br>Federation of Automatic Control, 2010, 42, 250-255.                             | 0.4 | 1         |
| 252 | Development of virtual-labs based on complex Modelica models using VirtualLabBuilder. International<br>Journal of Modelling, Identification and Control, 2010, 9, 98.                 | 0.2 | 3         |

4

| #   | Article                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Application of Event-Based Sampling Strategies for Fusion Research. Fusion Science and Technology, 2010, 58, 666-674.                                             | 1.1 | 0         |
| 254 | System modeling using the Parallel DEVS formalism and the Modelica language. Simulation Modelling Practice and Theory, 2010, 18, 998-1018.                        | 3.8 | 14        |
| 255 | Diagnosis of performance degradation phenomena in PEM fuel cells. International Journal of<br>Hydrogen Energy, 2010, 35, 2586-2590.                               | 7.1 | 75        |
| 256 | A packet-based network control system architecture for teleoperation and remote laboratories. , 2010, , .                                                         |     | 2         |
| 257 | Using interactive tools to teach/learn Sliding Mode Control. , 2010, , .                                                                                          |     | 3         |
| 258 | Java Simulations of Embedded Control Systems. Sensors, 2010, 10, 8585-8603.                                                                                       | 3.8 | 4         |
| 259 | Integrating Parallel DEVS and equation-based object-oriented modeling. , 2010, , .                                                                                |     | 2         |
| 260 | Object-oriented modelling and simulation of ACUREX solar thermal power plant. Mathematical and Computer Modelling of Dynamical Systems, 2010, 16, 211-224.        | 2.2 | 8         |
| 261 | Dynamic modelling of PEM fuel cells using theFuelCellLib Modelica library. Mathematical and<br>Computer Modelling of Dynamical Systems, 2010, 16, 165-194.        | 2.2 | 3         |
| 262 | Developing Networked Control Labs: A Matlab and Easy Java Simulations Approach. IEEE Transactions on Industrial Electronics, 2010, 57, 3266-3275.                 | 7.9 | 58        |
| 263 | The Reaction Wheel Pendulum: An Interactive Virtual Laboratory for Control Education.<br>International Journal of Online and Biomedical Engineering, 2010, 6, 54. | 1.4 | 4         |
| 264 | The Spanish University network of web-based laboratories for control engineering education: The AutomatL@bs project. , 2009, , .                                  |     | 3         |
| 265 | Building remote labs using Easy Java simulation and Matlab. , 2009, , .                                                                                           |     | 0         |
| 266 | Comparative study of event-based control strategies: An experimental approach on a simple tank. , 2009, , .                                                       |     | 22        |
| 267 | Interactive Learning Module for control interaction understanding. , 2009, , .                                                                                    |     | 4         |
| 268 | An interactive tool for fractional order PID controllers. , 2009, , .                                                                                             |     | 8         |
| 269 | Experimental validation of the FuelCellLib Modelica library. , 2009, , .                                                                                          |     | 1         |
|     |                                                                                                                                                                   |     |           |

An event-based PI controller based on feedback and feedforward actions. , 2009, , .

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | On the Application of Different Event-Based Sampling Strategies to the Control of a Simple Industrial Process. Sensors, 2009, 9, 6795-6818.                                                        | 3.8 | 63        |
| 272 | Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control. Sensors, 2009, 9, 232-252.                                                           | 3.8 | 119       |
| 273 | Web-Enabled Remote Scientific Environments. Computing in Science and Engineering, 2009, 11, 36-46.                                                                                                 | 1.2 | 32        |
| 274 | A robust constrained reference governor approach using linear matrix inequalities. Journal of Process Control, 2009, 19, 773-784.                                                                  | 3.3 | 11        |
| 275 | An unified approach for DTC design using interactive tools. Control Engineering Practice, 2009, 17, 1234-1244.                                                                                     | 5.5 | 33        |
| 276 | Real-time collaboration of virtual laboratories through the Internet. Computers and Education, 2009, 52, 126-140.                                                                                  | 8.3 | 96        |
| 277 | Virtual and remote experimentation with the Ball and Hoop system. , 2009, , .                                                                                                                      |     | 4         |
| 278 | The influence of event-based sampling techniques on data transmission and control performance. , 2009, , .                                                                                         |     | 14        |
| 279 | Visualization and interactive simulation of Modelica models for control education. , 2009, , .                                                                                                     |     | 4         |
| 280 | Stability Analysis of reset control systems with reset band. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2009, 42, 180-185.                                    | 0.4 | 8         |
| 281 | ITSIE: An Interactive Software Tool for System Identification Education. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2009, 42, 752-757.                        | 0.4 | 9         |
| 282 | Modeling of the ARGESIM "Crane and Embedded Controller―System using the DEVSLib Modelica<br>library. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 86-91. | 0.4 | 2         |
| 283 | Parallel DEVS and Process-Oriented Modeling in Modelica. , 2009, , .                                                                                                                               |     | 6         |
| 284 | Object-Oriented Modelling of Virtual- Laboratories for Control Education. , 2009, , 103-125.                                                                                                       |     | 0         |
| 285 | Electrochemical parameter estimation in operating proton exchange membrane fuel cells. Journal of<br>Power Sources, 2008, 183, 118-125.                                                            | 7.8 | 36        |
| 286 | An interactive tool for mobile robot motion planning. Robotics and Autonomous Systems, 2008, 56, 396-409.                                                                                          | 5.1 | 28        |
| 287 | Object-oriented modelling of virtual-labs for education in chemical process control. Computers and Chemical Engineering, 2008, 32, 3176-3186.                                                      | 3.8 | 22        |
| 288 | Interactive tool for analysis of time-delay systems with dead-time compensators. Control Engineering<br>Practice, 2008, 16, 824-835.                                                               | 5.5 | 39        |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | An interactive approach to template generation in quantitative feedback theory methodology. Asian<br>Journal of Control, 2008, 10, 361-367.                                                                   | 3.0 | 2         |
| 290 | Development of a Web-Based Control Laboratory for Automation Technicians: The Three-Tank System.<br>IEEE Transactions on Education, 2008, 51, 35-44.                                                          | 2.4 | 121       |
| 291 | An Integrated Virtual and Remote Control Lab: The Three-Tank System as a Case Study. Computing in Science and Engineering, 2008, 10, 50-59.                                                                   | 1.2 | 31        |
| 292 | Event-based control and wireless sensor network for greenhouse diurnal temperature control: A simulated case study. , 2008, , .                                                                               |     | 16        |
| 293 | Object oriented modelling and simulation of parabolic trough collectors with modelica.<br>Mathematical and Computer Modelling of Dynamical Systems, 2008, 14, 361-375.                                        | 2.2 | 7         |
| 294 | A Systematic Two-Layer Approach to Develop Web-Based Experimentation Environments for Control Engineering Education. Intelligent Automation and Soft Computing, 2008, 14, 505-524.                            | 2.1 | 29        |
| 295 | An approach to virtual-lab implementation using Modelica. Mathematical and Computer Modelling of Dynamical Systems, 2008, 14, 341-360.                                                                        | 2.2 | 13        |
| 296 | Interactive learning modules for PID control [Lecture Notes]. IEEE Control Systems, 2008, 28, 118-134.                                                                                                        | 0.8 | 65        |
| 297 | Developing and Implementing Virtual and Remote Labs for Control Education: The UNED pilot<br>experience. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41,<br>8159-8164. | 0.4 | 12        |
| 298 | Multitasking Real-Time Control Systems in Easy Java Simulations. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2008, 41, 12655-12660.                                       | 0.4 | 2         |
| 299 | Interactive Learning Module: Basic Modelling and Identification Concepts. IFAC Postprint Volumes IPPV<br>/ International Federation of Automatic Control, 2008, 41, 14606-14611.                              | 0.4 | 7         |
| 300 | Interactive Generation of Plant Templates for Robust Control. Proceedings of the American Control<br>Conference, 2007, , .                                                                                    | 0.0 | 0         |
| 301 | Devs specification and implementation of siman blocks using modelica language. , 2007, , .                                                                                                                    |     | 2         |
| 302 | Memorias de la automÃ <sub>i</sub> tica. RIAI - Revista Iberoamericana De Automatica E Informatica Industrial, 2007,<br>4, 114-117.                                                                           | 1.0 | 0         |
| 303 | Implementation of interactive virtual laboratories for control education using Modelica. , 2007, , .                                                                                                          |     | 1         |
| 304 | Robust GPC-QFT approach using Linear Matrix Inequalities. , 2007, , .                                                                                                                                         |     | 1         |
| 305 | Comparison of H <inf>â^ž</inf> with QFT applied to an altitude command tracker for an UAV. , 2007, , .                                                                                                        |     | 3         |
| 306 | Web-based learning resources for vocational training on control and measurement systems: The<br>AutoTECH project. , 2007, , .                                                                                 |     | 2         |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Diagnosis of PEM fuel cells through current interruption. Journal of Power Sources, 2007, 171, 670-677.                                                                                                  | 7.8 | 76        |
| 308 | PID controller design with constraints on sensitivity functions using loop slope adjustment. , 2006, , .                                                                                                 |     | 5         |
| 309 | WEB-BASED LEARNING RESOURCES FOR VOCATIONAL TRAINING FOR AUTOMATION TECHNICIANS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 141-146.                         | 0.4 | 3         |
| 310 | INTERACTIVE LEARNING MODULES FOR PID CONTROL. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 7-12.                                                               | 0.4 | 47        |
| 311 | INTERACTIVE TOOL FOR ANALYSIS OF TIME-DELAY SYSTEMS WITH DEAD-TIME COMPENSATORS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 428-433.                         | 0.4 | 0         |
| 312 | REMOTE LABORATORY FOR TEACHING MULTIVARIABLE CONTROL TECHNIQUES. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 493-498.                                         | 0.4 | 3         |
| 313 | Three coefficients of a polynomial can determine its Ï•-instability. Linear Algebra and Its Applications, 2006, 416, 857-867.                                                                            | 0.9 | 2         |
| 314 | Analysis of the use of industrial control systems in simulators: State of the art and basic guidelines.<br>ISA Transactions, 2006, 45, 295-312.                                                          | 5.7 | 13        |
| 315 | VIRTUAL LAB FOR TEACHING GREENHOUSE CLIMATIC CONTROL. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2005, 38, 79-84.                                                   | 0.4 | 6         |
| 316 | EXTENDED MOVING BOUNDARY MODEL FOR TWO-PHASE FLOWS. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2005, 38, 368-373.                                                   | 0.4 | 16        |
| 317 | OBJECT-ORIENTED MODELING OF VIRTUAL LABORATORIES FOR CONTROL EDUCATION. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 7-12.                                     | 0.4 | 5         |
| 318 | Learning control of robot manipulators by interactive simulation. Robotica, 2005, 23, 515-520.                                                                                                           | 1.9 | 4         |
| 319 | WEB-BASED VIRTUAL LAB AND REMOTE EXPERIMENTATION USING EASY JAVA SIMULATIONS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 103-108.                            | 0.4 | 13        |
| 320 | The learning of control concepts using interactive tools. Computer Applications in Engineering Education, 2005, 13, 84-98.                                                                               | 3.4 | 59        |
| 321 | Web-based remote control laboratory using a greenhouse scale model. Computer Applications in Engineering Education, 2005, 13, 111-124.                                                                   | 3.4 | 38        |
| 322 | Development of an XML-Based Lab for Remote Control Experiments on a Servo Motor. International<br>Journal of Electrical Engineering and Education, 2005, 42, 173-184.                                    | 0.8 | 20        |
| 323 | Interactive computer-aided control design using quantitative feedback theory: the problem of vertical movement stabilization on a high-speed ferry. International Journal of Control, 2005, 78, 813-825. | 1.9 | 13        |
| 324 | Parallel dynamic programming on clusters of workstations. IEEE Transactions on Parallel and Distributed Systems, 2005, 16, 785-798.                                                                      | 5.6 | 10        |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Design ofSPICELib: A Modelica library for modeling and analysis of electric circuits. Mathematical and<br>Computer Modelling of Dynamical Systems, 2005, 11, 43-60.                         | 2.2 | 6         |
| 326 | Interactive teaching of constrained generalized predictive control. IEEE Control Systems, 2005, 25, 52-66.                                                                                  | 0.8 | 49        |
| 327 | Magnetic levitation system: a virtual lab in "easy Java simulation". , 2004, , .                                                                                                            |     | 7         |
| 328 | TJ-II wave forms analysis with wavelets and support vector machines. Review of Scientific Instruments, 2004, 75, 4254-4257.                                                                 | 1.3 | 23        |
| 329 | A Java/Matlab-Based Environment for Remote Control System Laboratories: Illustrated With an<br>Inverted Pendulum. IEEE Transactions on Education, 2004, 47, 321-329.                        | 2.4 | 137       |
| 330 | Control learning: present and future. Annual Reviews in Control, 2004, 28, 115-136.                                                                                                         | 7.9 | 277       |
| 331 | Object-oriented Design of Reusable Model Libraries of Hybrid Dynamic Systems ? Part Two: A Case<br>Study. Mathematical and Computer Modelling of Dynamical Systems, 2003, 9, 91-118.        | 2.2 | 2         |
| 332 | Object-oriented Design of Reusable Model Libraries of Hybrid Dynamic Systems ? Part One: A Design<br>Methodology. Mathematical and Computer Modelling of Dynamical Systems, 2003, 9, 65-90. | 2.2 | 6         |
| 333 | The Role of Interactivity in Control Learning. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 1-12.                                                 | 0.4 | 31        |
| 334 | Integrating a Web-Based Laboratory into a Reusabilty-Oriented Framework. IFAC Postprint Volumes<br>IPPV / International Federation of Automatic Control, 2003, 36, 85-90.                   | 0.4 | 0         |
| 335 | Interactive Learning of Constrained Generalized Predictive Control. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2003, 36, 175-180.                      | 0.4 | 5         |
| 336 | The quadruple-tank process: An interactive tool for control education. , 2003, , .                                                                                                          |     | 24        |
| 337 | Hypermedia Design Methodology in World Wide Web Applications. International Journal of<br>Human-Computer Interaction, 2002, 14, 251-270.                                                    | 4.8 | 4         |
| 338 | AN INTERACTIVE TOOL FOR INTRODUCTORY NONLINEAR CONTROL SYSTEMS EDUCATION. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 255-260.                   | 0.4 | 21        |
| 339 | Virtual and remote control labs using Java: a qualitative approach. IEEE Control Systems, 2002, 22, 8-20.                                                                                   | 0.8 | 95        |
| 340 | Three coefficients of a polynomial can determine its instability. Linear Algebra and Its Applications, 2001, 338, 67-76.                                                                    | 0.9 | 12        |
| 341 | Robust stability and structured uncertainty bounded by the Euclidean norm. International Journal of Robust and Nonlinear Control, 2001, 11, 749-770.                                        | 3.7 | 1         |
| 342 | Methodologies for the Tuning of PID Controllers in the Frequency Domain. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2000, 33, 147-152.                    | 0.4 | 12        |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Conceptual Learning of Control by Java-Based Simulations. IFAC Postprint Volumes IPPV / International<br>Federation of Automatic Control, 2000, 33, 167-172.                                                         | 0.4 | 9         |
| 344 | Robust stability analysis of GPC and CRHPC using the theory of extreme point results. , 1999, , .                                                                                                                    |     | 2         |
| 345 | Reduction of the dimensionality of dynamic programming: a case study. , 1999, , .                                                                                                                                    |     | 12        |
| 346 | On the thirty-two virtual polynomials to stabilize an interval plant. IEEE Transactions on Automatic<br>Control, 1998, 43, 1460-1465.                                                                                | 5.7 | 3         |
| 347 | Integration of autonomous systems for remote control of data acquisition and diagnostics in the TJ-II device. Review of Scientific Instruments, 1997, 68, 963-966.                                                   | 1.3 | 3         |
| 348 | Software architecture of data acquisition control process during TJ-II operation. Review of Scientific Instruments, 1997, 68, 959-962.                                                                               | 1.3 | 1         |
| 349 | Kharitonov's theorem extension to interval polynomials which can drop in degree: a Nyquist approach. IEEE Transactions on Automatic Control, 1996, 41, 1009-1012.                                                    | 5.7 | 11        |
| 350 | D ERIVATIVE ACTION IN PID-FUZZY CONTROLLERS. Cybernetics and Systems, 1996, 27, 413-424.                                                                                                                             | 2.5 | 2         |
| 351 | Comparison Between the Thirty-two Virtual Vertices and the Ghosh Polynomials to Stabilize an<br>Interval Plant. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1996, 29,<br>3356-3361. | 0.4 | 2         |
| 352 | Improvements in the treatment of signals used for plasma diagnostics. IEEE Transactions on Nuclear Science, 1996, 43, 229.                                                                                           | 2.0 | 6         |
| 353 | Encoding technique for high data compaction in data bases of fusion devices. Review of Scientific<br>Instruments, 1996, 67, 4154-4160.                                                                               | 1.3 | 15        |
| 354 | Tuning fuzzy logic controllers by classical techniques. Lecture Notes in Computer Science, 1996, ,<br>214-224.                                                                                                       | 1.3 | 3         |
| 355 | On the sixty-four polynomials of Djaferis to stabilize an interval plant. IEEE Transactions on Automatic Control, 1995, 40, 2122-2127.                                                                               | 5.7 | 7         |
| 356 | REDUCED-ORDER KALMAN FILTER FOR ALIGNMENT. Cybernetics and Systems, 1994, 25, 1-16.                                                                                                                                  | 2.5 | 11        |
| 357 | Calibration and stochastic modeling of a laser-gyro for laboratory testing. Mathematical and Computer Modelling, 1990, 14, 231-236.                                                                                  | 2.0 | 1         |
| 358 | A fast method for optimal synthesis of logical functions of four variables with multiplexers.<br>Computers and Electrical Engineering, 1987, 13, 61-66.                                                              | 4.8 | 0         |
| 359 | Inversion algorithm to construct Routh approximants. Electronics Letters, 1985, 21, 424-426.                                                                                                                         | 1.0 | 3         |
| 360 | Generalization of the Voith method for minimization of incompletely specified function with multiplexer universal logic modules. International Journal of Electronics, 1983, 54, 271-278.                            | 1.4 | 1         |

| #   | Article                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Compensation of discrete systems to variations in their parameters by changing sampling period.<br>Electronics Letters, 1982, 18, 404.  | 1.0 | 13        |
| 362 | An Upper Bound for the Synthesis of Generalized Parallel Counters. IEEE Transactions on Computers, 1982, C-31, 802-805.                 | 3.4 | 5         |
| 363 | Nonperiodic sampling and identifiability. Electronics Letters, 1981, 17, 922.                                                           | 1.0 | 14        |
| 364 | Aperiodic Sampling and Identifiability. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1981, 14, 669-674. | 0.4 | 1         |
| 365 | Synthesis of Generalized Parallel Counters. IEEE Transactions on Computers, 1981, C-30, 699-703.                                        | 3.4 | 10        |
| 366 | A note on the transmission of relative errors in the observability problem. IEEE Transactions on Automatic Control, 1979, 24, 634-635.  | 5.7 | 15        |
| 367 | Robust predictive PI controller. , 0, , .                                                                                               |     | 2         |
| 368 | Phase margin identification with an adaptive sampling system. , 0, , .                                                                  |     | 0         |
| 369 | Fuzzy-PID controllers vs. fuzzy-PI controllers. , 0, , .                                                                                |     | 11        |
| 370 | Between fuzzy-PID and PID-conventional controllers: a good choice. , 0, , .                                                             |     | 7         |
| 371 | Adding interactivity to existing Simulink models using Easy Java Simulations. , 0, , .                                                  |     | 23        |
| 372 | Easy Mobile Device Programming for Educational Purposes. , 0, , .                                                                       |     | 4         |
| 373 | QFT Robust Control Design by Interactive Approach. , 0, , .                                                                             |     | 1         |
| 374 | Modelling and Simulation of Central Receiver Solar Thermal Power Plants. , 0, , .                                                       |     | 4         |
| 375 | Interactive 3D Simulation of Flat Systems: The SpiderCrane as a Case Study. , 0, , .                                                    |     | 6         |
| 376 | AutomatL@bs Consortium. , 0, , 679-699.                                                                                                 |     | 1         |