Takashi Miki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/354725/publications.pdf Version: 2024-02-01

Τλέλομι Μικι

#	Article	IF	CITATIONS
1	Phloretin suppresses carbohydrate-induced GLP-1 secretion via inhibiting short chain fatty acid release from gut microbiome. Biochemical and Biophysical Research Communications, 2022, 621, 176-182.	2.1	3
2	GPR52 accelerates fatty acid biosynthesis in a ligand-dependent manner in hepatocytes and in response to excessive fat intake in mice. IScience, 2021, 24, 102260.	4.1	2
3	Lack of Brain Insulin Receptor Substrate-1 Causes Growth Retardation, With Decreased Expression of Growth Hormone–Releasing Hormone in the Hypothalamus. Diabetes, 2021, 70, 1640-1653.	0.6	3
4	Lecithin Inclusion by $\hat{I}\pm$ -Cyclodextrin Activates SREBP2 Signaling in the Gut and Ameliorates Postprandial Hyperglycemia. International Journal of Molecular Sciences, 2021, 22, 10796.	4.1	1
5	Gs/Gq signaling switch in \hat{l}^2 cells defines incretin effectiveness in diabetes. Journal of Clinical Investigation, 2020, 130, 6639-6655.	8.2	46
6	Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nature Communications, 2019, 10, 4007.	12.8	231
7	Diet-Induced Obese Mice and Leptin-Deficient Lepob/ob Mice Exhibit Increased Circulating GIP Levels Produced by Different Mechanisms. International Journal of Molecular Sciences, 2019, 20, 4448.	4.1	4
8	Deficiency of lysyl hydroxylase 2 in mice causes systemic endoplasmic reticulum stress leading to early embryonic lethality. Biochemical and Biophysical Research Communications, 2019, 512, 486-491.	2.1	12
9	Distinct roles of systemic and local actions of insulin on pancreatic β-cells. Metabolism: Clinical and Experimental, 2018, 82, 100-110.	3.4	7
10	Accelerated oligosaccharide absorption and altered serum metabolites during oral glucose tolerance test in young Japanese with impaired glucose tolerance. Journal of Diabetes Investigation, 2018, 9, 512-521.	2.4	4
11	Ectopic overexpression of Kir6.1 in the mouse heart impacts on the life expectancy. Scientific Reports, 2018, 8, 11723.	3.3	1
12	Gut carbohydrate inhibits GIP secretion via a microbiota/SCFA/FFAR3 pathway. Journal of Endocrinology, 2018, 239, 267-276.	2.6	29
13	Electrophysiological analyses of transgenic mice overexpressing KCNJ8 with S422L mutation in cardiomyocytes. Journal of Pharmacological Sciences, 2017, 135, 37-43.	2.5	4
14	Importance of Hepatocyte Nuclear Factor 4α in Glycerol-induced Glucose-6-phosphatase Expression in Liver . Biomedical Research, 2016, 37, 85-93.	0.9	3
15	Importance of Adult Dmbx1 in Long-Lasting Orexigenic Effect of Agouti-Related Peptide. Endocrinology, 2016, 157, 245-257.	2.8	6
16	Distinct effects of dipeptidyl peptidase-4 inhibitor and glucagon-like peptide-1 receptor agonist on islet morphology and function. Endocrine, 2016, 51, 429-439.	2.3	11
17	Fructose induces glucoseâ€dependent insulinotropic polypeptide, glucagonâ€like peptideâ€1 and insulin secretion: Role of adenosine triphosphateâ€sensitive K + channels. Journal of Diabetes Investigation, 2015, 6, 522-526.	2.4	19
18	Unsuppressed lipolysis in adipocytes is linked with enhanced gluconeogenesis and altered bile acid physiology in InsrP1195L/+ mice fed high-fat-diet. Scientific Reports, 2015, 5, 17565.	3.3	14

#	Article	IF	CITATIONS
19	Role of the central nervous system and adipose tissue BDNF/TrkB axes in metabolic regulation. Npj Aging and Mechanisms of Disease, 2015, 1, 15009.	4.5	47
20	Refeeding with glucose rather than fructose elicits greater hepatic inflammatory gene expression in mice. Nutrition, 2015, 31, 757-765.	2.4	9
21	Distinct action of the α-glucosidase inhibitor miglitol on SCLT3, enteroendocrine cells, and GLP1 secretion. Journal of Endocrinology, 2015, 224, 205-214.	2.6	32
22	Haploinsufficiency of the <i>c-myc</i> transcriptional repressor <i>FIR</i> , as a dominant negative-alternative splicing model, promoted p53-dependent T-cell acute lymphoblastic leukemia progression by activating Notch1. Oncotarget, 2015, 6, 5102-5117.	1.8	14
23	KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state. Journal of Endocrinology, 2014, 222, 191-200.	2.6	35
24	Enhanced vascular endothelial growth factor signaling in islets contributes to β cell injury and consequential diabetes in spontaneously diabetic Torii rats. Diabetes Research and Clinical Practice, 2014, 106, 303-311.	2.8	20
25	Cephalic phase insulin secretion is KATP channel independent. Journal of Endocrinology, 2013, 218, 25-33.	2.6	48
26	Refeeding with a standard diet after a 48-h fast elicits an inflammatory response in the mouse liver. Journal of Nutritional Biochemistry, 2013, 24, 1314-1323.	4.2	5
27	A Case of Type 1 Diabetes With Nocturnal Hypoglycemia After Desensitization Therapy for Insulin Allergy. Diabetes Care, 2013, 36, e89-e89.	8.6	1
28	Glucagonâ€like peptideâ€1 secretion by direct stimulation of L cells with luminal sugar vs nonâ€nutritive sweetener. Journal of Diabetes Investigation, 2012, 3, 156-163.	2.4	18
29	A Novel Function of Noc2 in Agonist-Induced Intracellular Ca2+ Increase during Zymogen-Granule Exocytosis in Pancreatic Acinar Cells. PLoS ONE, 2012, 7, e37048.	2.5	11
30	Restricted expression of somatostatin receptor 3 to primary cilia in the pancreatic islets and adenohypophysis of mice. Biomedical Research, 2011, 32, 73-81.	0.9	40
31	Pancreatic β-cells are generated by neogenesis from non-β-cells after birth. Biomedical Research, 2011, 32, 167-174.	0.9	24
32	Inhibition of ATP-Sensitive K+ Channels and L-Type Ca2+ Channels by Amiodarone Elicits Contradictory Effect on Insulin Secretion in MIN6 Cells. Journal of Pharmacological Sciences, 2011, 116, 73-80.	2.5	13
33	Beneficial effects of ventromedial hypothalamus (VMH) lesioning on function and morphology of the liver after hepatectomy in rats. Brain Research, 2011, 1421, 82-89.	2.2	1
34	Rim2α Determines Docking and Priming States in Insulin Granule Exocytosis. Cell Metabolism, 2010, 12, 117-129.	16.2	97
35	Establishment of new clonal pancreatic β ell lines (MIN6â€K) useful for study of incretin/cyclic adenosine monophosphate signaling. Journal of Diabetes Investigation, 2010, 1, 137-142.	2.4	36
36	The cAMP Sensor Epac2 Is a Direct Target of Antidiabetic Sulfonylurea Drugs. Science, 2009, 325, 607-610.	12.6	198

#	Article	IF	CITATIONS
37	Glucose Controls Cytosolic Ca2+ and Insulin Secretion in Mouse Islets Lacking Adenosine Triphosphate-Sensitive K+ Channels Owing to a Knockout of the Pore-Forming Subunit Kir6.2. Endocrinology, 2009, 150, 33-45.	2.8	71
38	Critical role of the Nâ€ŧerminal cyclic AMPâ€binding domain of Epac2 in its subcellular localization and function. Journal of Cellular Physiology, 2009, 219, 652-658.	4.1	82
39	Proteomic profiling of K _{ATP} channelâ€deficient hypertensive heart maps risk for maladaptive cardiomyopathic outcome. Proteomics, 2009, 9, 1314-1325.	2.2	36
40	LKB1 Regulates Pancreatic \hat{I}^2 Cell Size, Polarity, and Function. Cell Metabolism, 2009, 10, 296-308.	16.2	143
41	Embryonic Stem Cell Therapy of Heart Failure in Genetic Cardiomyopathy. Stem Cells, 2008, 26, 2644-2653.	3.2	71
42	Role of sarcolemmal ATPâ€sensitive K ⁺ channels in the regulation of sinoatrial node automaticity: an evaluation using Kir6.2â€deficient mice. Journal of Physiology, 2008, 586, 2767-2778.	2.9	25
43	K _{ATP} channel-deficient pancreatic β-cells are streptozotocin resistant because of lower GLUT2 activity. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E326-E335.	3.5	12
44	lsx Participates in the Maintenance of Vitamin A Metabolism by Regulation of β-Carotene 15,15′-Monooxygenase (Bcmo1) Expression. Journal of Biological Chemistry, 2008, 283, 4905-4911.	3.4	77
45	Protein Kinase A-Independent Mechanism of cAMP in Insulin Secretion. , 2008, , 133-146.		0
46	Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19333-19338.	7.1	358
47	KATP channel knockout worsens myocardial calcium stress load in vivo and impairs recovery in stunned heart. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1706-H1713.	3.2	54
48	KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, 110-116.	3.3	159
49	Dmbx1 is essential in agouti-related protein action. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15514-15519.	7.1	18
50	Disruption of Kir6.2 ontaining ATPâ€sensitive potassium channels impairs maintenance of hypoxic gasping in mice. European Journal of Neuroscience, 2007, 25, 2349-2363.	2.6	10
51	Identification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish. Physiological Genomics, 2006, 24, 290-297.	2.3	18
52	Enhanced Neuronal Damage After Ischemic Insults in Mice Lacking Kir6.2-Containing ATP-Sensitive K+ Channels. Journal of Neurophysiology, 2006, 95, 2590-2601.	1.8	86
53	Protection conferred by myocardial ATP-sensitive K+channels in pressure overload-induced congestive heart failure revealed inKCNJ11Kir6.2-null mutant. Journal of Physiology, 2006, 577, 1053-1065.	2.9	102
54	KCNJ11 gene knockout of the Kir6.2 K ATP channel causes maladaptive remodeling and heart failure in hypertension. Human Molecular Genetics, 2006, 15, 2285-2297.	2.9	98

#	Article	IF	CITATIONS
55	Spontaneous Recovery From Hyperglycemia by Regeneration of Pancreatic Â-Cells in Kir6.2G132S Transgenic Mice. Diabetes, 2006, 55, 1930-1938.	0.6	25
56	Gene knockout of the KCNJ8â€encoded Kir6.1 K ATP channel imparts fatal susceptibility to endotoxemia. FASEB Journal, 2006, 20, 2271-2280.	0.5	71
57	K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nature Neuroscience, 2005, 8, 1742-1751.	14.8	253
58	Distinct Effects of Glucose-Dependent Insulinotropic Polypeptide and Glucagon-Like Peptide-1 on Insulin Secretion and Gut Motility. Diabetes, 2005, 54, 1056-1063.	0.6	103
59	Role of ATP-sensitive K+ channels in electrophysiological alterations during myocardial ischemia: a study using Kir6.2-null mice. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H352-H357.	3.2	40
60	Possible role of PEPT1 in gastrointestinal hormone secretion. Biochemical and Biophysical Research Communications, 2005, 336, 1028-1032.	2.1	45
61	Functional analysis of transcriptional repressor Otx3/Dmbx1. FEBS Letters, 2005, 579, 2926-2932.	2.8	10
62	Roles of K channels as metabolic sensors in acute metabolic changes. Journal of Molecular and Cellular Cardiology, 2005, 38, 917-925.	1.9	143
63	Construction of a Multi-Functional cDNA Library Specific for Mouse Pancreatic Islets and Its Application to Microarray. DNA Research, 2004, 11, 315-323.	3.4	8
64	Genetic Disruption of Kir6.2, the Pore-Forming Subunit of ATP-Sensitive K+ Channel, Predisposes to Catecholamine-Induced Ventricular Dysrhythmia. Diabetes, 2004, 53, S165-S168.	0.6	68
65	Diet-Induced Glucose Intolerance in Mice With Decreased Â-Cell ATP-Sensitive K+ Channels. Diabetes, 2004, 53, 3159-3167.	0.6	42
66	Roles of ATP-Sensitive K+ Channels as Metabolic Sensors: Studies of Kir6.x Null Mice. Diabetes, 2004, 53, S176-S180.	0.6	94
67	ATP-Sensitive K+ Channel Knockout Compromises the Metabolic Benefit of Exercise Training, Resulting in Cardiac Deficits. Diabetes, 2004, 53, S169-S175.	0.6	89
68	Noc2 is essential in normal regulation of exocytosis in endocrine and exocrine cells. Proceedings of the United States of America, 2004, 101, 8313-8318.	7.1	75
69	Gene targeting approach to clarification of ion channel function: studies of Kir6.x null mice. Journal of Physiology, 2004, 554, 295-300.	2.9	61
70	Physiological and pathophysiological roles of ATP-sensitive K+ channels. Progress in Biophysics and Molecular Biology, 2003, 81, 133-176.	2.9	451
71	Cardioprotective Effect of Diazoxide Is Mediated by Activation of Sarcolemmal but Not Mitochondrial ATP-Sensitive Potassium Channels in Mice. Circulation, 2003, 107, 682-685.	1.6	115
72	Knockout of Kir6.2 negates ischemic preconditioning-induced protection of myocardial energetics. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H2106-H2113.	3.2	112

#	Article	IF	CITATIONS
73	Ca ²⁺ Influx Does Not Trigger Glucose-Induced Traffic of the Insulin Granules and Alteration of Their Distribution. Experimental Biology and Medicine, 2003, 228, 1218-1226.	2.4	12
74	ATP-sensitive K+ channel-mediated glucose uptake is independent of IRS-1/phosphatidylinositol 3-kinase signaling. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E1289-E1296.	3.5	18
75	Kir6.2 is required for adaptation to stress. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13278-13283.	7.1	279
76	Identification, Tissue Expression, and Functional Characterization of Otx3, a Novel Member of the Otx Family. Journal of Biological Chemistry, 2002, 277, 28065-28069.	3.4	25
77	ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E1178-E1184.	3.5	81
78	Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1. Nature Medicine, 2002, 8, 466-472.	30.7	306
79	Role of sarcolemmal KATP channels in cardioprotection against ischemia/reperfusion injury in mice. Journal of Clinical Investigation, 2002, 109, 509-516.	8.2	269
80	Role of sarcolemmal KATP channels in cardioprotection against ischemia/reperfusion injury in mice. Journal of Clinical Investigation, 2002, 109, 509-516.	8.2	209
81	Analysis of the insulin-sensitive phosphodiesterase 3B gene in type 2 diabetes. Diabetes Research and Clinical Practice, 2001, 54, 79-88.	2.8	9
82	Morphological Changes in Pancreatic Islets of KATP Channel-Deficient Mice. The Involvement of KATP Channels in the Survival of Insulin Cells and the Maintenance of Islet Architecture Archives of Histology and Cytology, 2001, 64, 59-67.	0.2	43
83	Functional Roles of Cardiac and Vascular ATP-Sensitive Potassium Channels Clarified by Kir6.2-Knockout Mice. Circulation Research, 2001, 88, 570-577.	4.5	184
84	ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nature Neuroscience, 2001, 4, 507-512.	14.8	470
85	Critical Role of cAMP-GEFII·Rim2 Complex in Incretin-potentiated Insulin Secretion. Journal of Biological Chemistry, 2001, 276, 46046-46053.	3.4	313
86	Protective Role of ATP-Sensitive Potassium Channels in Hypoxia-Induced Generalized Seizure. Science, 2001, 292, 1543-1546.	12.6	318
87	Characterization of Genes Encoding the Pancreatic .BETAcell ATP-sensitive K+ channel in Persistent Hyperinsulinemic Hypoglycemia of Infancy in Japanese Patients Endocrine Journal, 2000, 47, 715-722.	1.6	14
88	cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nature Cell Biology, 2000, 2, 805-811.	10.3	431
89	Insulin secretion and differential gene expression in glucose-responsive and -unresponsive MIN6 sublines. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E773-E781.	3.5	116
90	Molecular Basis of Electrocardiographic ST-Segment Elevation. Circulation Research, 2000, 87, 837-839.	4.5	159

#	Article	IF	CITATIONS
91	MTABC3, a Novel Mitochondrial ATP-binding Cassette Protein Involved in Iron Homeostasis. Journal of Biological Chemistry, 2000, 275, 17536-17540.	3.4	118
92	Angiopoietin-3, a novel member of the angiopoietin family. FEBS Letters, 1999, 448, 254-256.	2.8	21
93	Characterization of the cDNA and Gene Encoding Human PDE3B, the cGIP1 Isoform of the Human Cyclic GMP-Inhibited Cyclic Nucleotide Phosphodiesterase Family. Genomics, 1996, 36, 476-485.	2.9	60
94	Electrochemical Modification of Vesicular Stomatitis Virus Glycoprotein byâ€Host Cell Transformation. Microbiology and Immunology, 1981, 25, 585-594.	1.4	3
95	Concanavalin A Agglutinability of Some Enveloped RNA Viruses Modified by Host Cell Transformation. Microbiology and Immunology, 1980, 24, 429-438.	1.4	3