Didier Betbeder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3547226/publications.pdf

Version: 2024-02-01

71
papers ci

2,733 citations

30 h-index 51 g-index

73 all docs 73 docs citations

73 times ranked 4047 citing authors

#	Article	IF	CITATIONS
1	Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. International Journal of Pharmaceutics, 2009, 379, 285-292.	5.2	247
2	Formulation and characterization of polyphenol-loaded lipid nanocapsules. International Journal of Pharmaceutics, 2009, 379, 270-277.	5.2	185
3	Influence of surface charge and inner composition of porous nanoparticles to cross blood–brain barrier in vitro. International Journal of Pharmaceutics, 2007, 344, 103-109.	5.2	128
4	Oral dendritic cells mediate antigen-specific tolerance by stimulating TH1 and regulatory CD4+ T cells. Journal of Allergy and Clinical Immunology, 2008, 122, 603-609.e5.	2.9	119
5	Improvement of sublingual immunotherapy efficacy with a mucoadhesive allergen formulation. Journal of Allergy and Clinical Immunology, 2007, 120, 278-285.	2.9	104
6	Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells. Nanotechnology, 2010, 21, 355102.	2.6	100
7	Intranasal immunization with recombinant antigens associated with new cationic particles induces strong mucosal as well as systemic antibody and CTL responses. Vaccine, 2002, 20, 2752-2763.	3.8	98
8	Transferrin Adsorption onto PLGA Nanoparticles Governs Their Interaction with Biological Systems from Blood Circulation to Brain Cancer Cells. Pharmaceutical Research, 2012, 29, 1495-1505.	3.5	95
9	Influence of the surface charge of PLGA nanoparticles on their <i>in vitro</i> genotoxicity, cytotoxicity, ROS production and endocytosis. Journal of Applied Toxicology, 2016, 36, 434-444.	2.8	73
10	Head-to-head comparison of four nonadjuvanted inactivated cell culture-derived influenza vaccines: Effect of composition, spatial organization and immunization route on the immunogenicity in a murine challenge model. Vaccine, 2008, 26, 6555-6563.	3.8	68
11	Nasal nanovaccines. International Journal of Pharmaceutics, 2017, 530, 128-138.	5.2	66
12	Proofs of the structure of lipid coated nanoparticles (SMBV) used as drug carriers. Pharmaceutical Research, 2000, 17, 817-824.	3.5	64
13	Porous nanoparticles as delivery system of complex antigens for an effective vaccine against acute and chronic Toxoplasma gondii infection. Biomaterials, 2015, 50, 164-175.	11.4	61
14	Airway delivery of peptides and proteins using nanoparticles. Biomaterials, 2013, 34, 516-525.	11.4	59
15	Development of innovative paclitaxel-loaded small PLGA nanoparticles: Study of their antiproliferative activity and their molecular interactions on prostatic cancer cells. International Journal of Pharmaceutics, 2013, 454, 712-719.	5.2	58
16	Enhancement of Protective Efficacy following Intranasal Immunization with Vaccine Plus a Nontoxic LTK63 Mutant Delivered with Nanoparticles. Infection and Immunity, 2002, 70, 4785-4790.	2.2	57
17	Study of serum interaction with a cationic nanoparticle: Implications for in vitro endocytosis, cytotoxicity and genotoxicity. International Journal of Pharmaceutics, 2012, 423, 37-44.	5.2	54
18	Preparation and characterization of novel chitosan and \hat{l}^2 -cyclodextrin polymer sponges for wound dressing applications. Carbohydrate Polymers, 2017, 173, 535-546.	10.2	51

#	Article	IF	CITATIONS
19	Biovector nanoparticles improve antinociceptive efficacy of nasal morphine. Pharmaceutical Research, 2000, 17, 743-748.	3.5	49
20	Effects of \hat{I}^3 - and Hydroxypropyl- \hat{I}^3 -cyclodextrins on the Transport of Doxorubicin across an in Vitro Model of Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 1115-1120.	2.5	48
21	Positively-Charged, Porous, Polysaccharide Nanoparticles Loaded with Anionic Molecules Behave as â€~Stealth' Cationic Nanocarriers. Pharmaceutical Research, 2010, 27, 126-133.	3.5	48
22	Characterisation and phase behaviour of phospholipid bilayers adsorbed on spherical polysaccharidic nanoparticles. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1327, 32-40.	2.6	47
23	Development of transferrin functionalized poly(ethylene glycol)/poly(lactic acid) amphiphilic block copolymeric micelles as a potential delivery system targeting brain glioma. Journal of Materials Science: Materials in Medicine, 2010, 21, 2673-2681.	3.6	47
24	Mechanisms allowing protein delivery in nasal mucosa using NPL nanoparticles. Journal of Controlled Release, 2016, 232, 42-50.	9.9	47
25	Activation of invariant Natural Killer T lymphocytes in response to the $\hat{l}\pm$ -galactosylceramide analogue KRN7000 encapsulated in PLGA-based nanoparticles and microparticles. International Journal of Pharmaceutics, 2012, 423, 45-54.	5. 2	43
26	Ex Vivo Stimulation and Expansion of both CD4 + and CD8 + T Cells from Peripheral Blood Mononuclear Cells of Human Cytomegalovirus-Seropositive Blood Donors by Using a Soluble Recombinant Chimeric Protein, IE1-pp65. Journal of Virology, 2001, 75, 7840-7847.	3.4	41
27	The stereoselective enzymatic synthesis of 9-β-d-2′-deoxyribofuranosyl 1-deazapurine. Nucleic Acids Research, 1989, 17, 4217-4222.	14.5	36
28	Efficacy of sublingual vectorized recombinant Bet ν 1a in a mouse model of birch pollen allergic asthma. Vaccine, 2013, 31, 2628-2637.	3.8	31
29	HBHA vaccination may require both Th1 and Th17 immune responses to protect mice against tuberculosis. Vaccine, 2014, 32, 6240-6250.	3.8	31
30	New methods to determine the extent of reaction of epichlorohydrin with maltodextrins. Carbohydrate Research, 1999, 319, 17-23.	2.3	30
31	Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotechnology, 2010, 21, 505102.	2.6	30
32	Influence of surface charge and inner composition of nanoparticles on intracellular delivery of proteins in airway epithelial cells. Biomaterials, 2012, 33, 9117-9126.	11.4	30
33	Porous Nanoparticles With Self-Adjuvanting M2e-Fusion Protein and Recombinant Hemagglutinin Provide Strong and Broadly Protective Immunity Against Influenza Virus Infections. Frontiers in Immunology, 2018, 9, 2060.	4.8	25
34	Residence time and uptake of porous and cationic maltodextrin-based nanoparticles in the nasal mucosa: Comparison with anionic and cationic nanoparticles. International Journal of Pharmaceutics, 2018, 550, 316-324.	5.2	25
35	Effective Nanoparticle-Based Nasal Vaccine Against Latent and Congenital Toxoplasmosis in Sheep. Frontiers in Immunology, 2020, 11, 2183.	4.8	24
36	Design and Antileishmanial Activity of Amphotericin B-Loaded Stable Ionic Amphiphile Biovector Formulations. Antimicrobial Agents and Chemotherapy, 2002, 46, 1597-1601.	3.2	23

#	Article	IF	CITATIONS
37	Combination of human cytomegalovirus recombinant immediate-early protein (IE1) with 80 nm cationic biovectors: protection from proteolysis and potentiation of presentation to CD4+ T-cell clones in vitro. Vaccine, 1996, 14, 511-520.	3.8	22
38	Synthetic parasites: a successful mucosal nanoparticle vaccine against <i>Toxoplasma</i> congenital infection in mice. Future Microbiology, 2017, 12, 393-405.	2.0	22
39	A new family of carriers (biovectors) enhances the immunogenicity of rabies antigens. Vaccine, 1996, 14, 1353-1360.	3.8	21
40	Stabilization and enhancement of interleukin-2 in vitro bioactivity by new carriers: supramolecular biovectors. Vaccine, 1994, 12, 1413-1418.	3.8	20
41	A combination of interleukin-2 and 60 nm cationic supramolecular biovectors for the treatment of established tumours by subcutaneous or intranasal administration. European Journal of Cancer, 2001, 37, 1053-1060.	2.8	20
42	Antimicrobials. New nitrofuran derivatives. Journal of Medicinal Chemistry, 1973, 16, 281-287.	6.4	19
43	Separation of dipalmitoyl phosphatidyl choline, cholesterol and their degradation products by high-performance liquid chromatography on a perfluorinated stationary bonded phase. Journal of Chromatography A, 1999, 840, 31-38.	3.7	19
44	Drug delivery systems in the treatment of African trypanosomiasis infections. Expert Opinion on Drug Delivery, 2011, 8, 735-747.	5.0	18
45	Structural characterization (shape and dimensions) and stability of polysaccharide/lipid nanoparticles. Biopolymers, 1997, 41, 511-520.	2.4	17
46	Versatile enzymatic diacid ester synthesis of butyl \hat{l} ±-D-glucopyranoside. Tetrahedron, 1993, 49, 10877-10882.	1.9	16
47	Effect of high-intensity interval training and detraining on extra $\{0t_{V}}\$ bbox $\{0_{2}\}$ and on the $\{0t_{V}\}\$ bbox $\{0_{2}\}$ slow component. European Journal of Applied Physiology, 2007, 99, 633-640.	2.5	15
48	Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties. International Journal of Nanomedicine, 2015, 10, 5355.	6.7	15
49	Protein delivery by porous cationic maltodextrin-based nanoparticles into nasal mucosal cells: Comparison with cationic or anionic nanoparticles. International Journal of Pharmaceutics: X, 2019, 1, 100001.	1.6	13
50	Effect of prior heavy exercise on muscle deoxygenation kinetics at the onset of subsequent heavy exercise. European Journal of Applied Physiology, 2007, 99, 677-684.	2.5	12
51	Enzymatic Sywmesis of Dideoxyribonucleosides. Nucleosides & Nucleotides, 1991, 10, 465-468.	0.5	11
52	Importance of the Phospholipid Core for Mucin Hydrogel Penetration and Mucosal Cell Uptake of Maltodextrin Nanoparticles. ACS Applied Bio Materials, 2020, 3, 5741-5749.	4.6	11
53	Intranasal vaccine from whole Leishmania donovani antigens provides protection and induces specific immune response against visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2021, 15, e0009627.	3.0	11
54	Improved Synthesis of Sodium Alkyl-Glucopyranuronates. Synthetic Communications, 1993, 23, 1357-1360.	2.1	10

#	Article	IF	Citations
55	Regiospecific enzymic acylation of butyl α-d-glucopyranoside. Carbohydrate Research, 1993, 243, 407-411.	2.3	9
56	Effect of Prior Exercise on the V·O2/Work Rate Relationship During Incremental Exercise and Constant Work Rate Exercise. International Journal of Sports Medicine, 2006, 27, 345-350.	1.7	9
57	Drug delivery to the brain using colloidal carriers. Progress in Brain Research, 2009, 180, 2-17.	1.4	9
58	Solubilization of \hat{l}_{\pm} -galactosylceramide in aqueous medium: Impact on Natural Killer T cell activation and antitumor responses. International Journal of Pharmaceutics, 2017, 530, 354-363.	5.2	9
59	IE1-pp65 recombinant protein from human CMV combined with a nanoparticulate carrier, SMBV, as a potential source for the development of anti-human CMV adoptive immunotherapy. Cytotherapy, 2002, 4, 11-19.	0.7	8
60	Development and validation of a reversedâ€phase HPLC method for the quantification of paclitaxel in different PLGA nanocarriers. Electrophoresis, 2017, 38, 2536-2541.	2.4	8
61	Structural characterization of organized systems of polysaccharides and phospholipids by light scattering spectroscopy and electron microscopy. Carbohydrate Research, 1997, 300, 31-40.	2.3	7
62	Stabilization of Human Tyrosine Hydroxylase in Maltodextrin Nanoparticles for Delivery to Neuronal Cells and Tissue. Bioconjugate Chemistry, 2018, 29, 493-502.	3.6	7
63	Porous Maltodextrin-Based Nanoparticles: A Safe Delivery System for Nasal Vaccines. Journal of Nanomaterials, 2018, 2018, 1-8.	2.7	7
64	Prevention of influenza virus infection and transmission by intranasal administration of a porous maltodextrin nanoparticle-formulated vaccine. International Journal of Pharmaceutics, 2020, 582, 119348.	5.2	7
65	Starch nanoparticles improve curcumin-induced production of anti-inflammatory cytokines in intestinal epithelial cells. International Journal of Pharmaceutics: X, 2022, 4, 100114.	1.6	7
66	Production of homogeneous basic fibroblast growth factor by specific enzymatic hydrolysis of larger microheterogeneous molecular forms. Journal of Biotechnology, 1991, 21, 83-92.	3.8	4
67	Vectorization by nanoparticles decreases the overall toxicity of airborne pollutants. PLoS ONE, 2017, 12, e0183243.	2.5	4
68	Preface. International Journal of Pharmaceutics, 2009, 379, 199-200.	5.2	1
69	Characterization of a benzyl-phenoxy-ethanamine binding protein in Trypanosoma equiperdum and the possible relation between binding affinity and trypanocidal activity. Molecular and Biochemical Parasitology, 1993, 58, 311-316.	1.1	0
70	Targeting the Allergen to Dendritic Cells with Mucoadhesive Formulations Enhances Tolerance Induction Via the Sublingual Route. Journal of Allergy and Clinical Immunology, 2008, 121, S14-S14.	2.9	0
71	Letter to the Editor. Vaccine, 2009, 27, 3691.	3.8	0