Alcide Giorgio di Sarra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3547177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atmospheric Brown Clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmospheric Chemistry and Physics, 2010, 10, 7515-7531.	1.9	252
2	Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types. Atmospheric Chemistry and Physics, 2006, 6, 697-713.	1.9	246
3	Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Global Change Biology, 2010, 16, 1317-1337.	4.2	223
4	Evidence for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: a possible large role of ships emissions in the Mediterranean. Atmospheric Chemistry and Physics, 2012, 12, 3479-3492.	1.9	135
5	Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005. Atmospheric Environment, 2007, 41, 3041-3056.	1.9	129
6	Influence of the vertical profile of Saharan dust on the visible direct radiative forcing. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 93, 397-413.	1.1	119
7	Aerosol optical properties at Lampedusa (Central Mediterranean). 2. Determination of single scattering albedo at two wavelengths for different aerosol types. Atmospheric Chemistry and Physics, 2006, 6, 715-727.	1.9	119
8	Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (Photochemical Activity and Solar Ultraviolet Radiation campaign). Applied Optics, 1997, 36, 6875.	2.1	112
9	Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign. Atmospheric Chemistry and Physics, 2016, 16, 455-504.	1.9	110
10	Forest fire aerosol over the Mediterranean basin during summer 2003. Journal of Geophysical Research, 2005, 110, .	3.3	95
11	Dust aerosol radiative effects during summer 2012 simulated with a coupled regional aerosol–atmosphere–ocean model over the Mediterranean. Atmospheric Chemistry and Physics, 2015, 15, 3303-3326.	1.9	93
12	Seasonal transport patterns of intense Saharan dust events at the Mediterranean island of Lampedusa. Atmospheric Research, 2008, 88, 134-148.	1.8	92
13	Saharan dust aerosol over the central Mediterranean Sea: PM ₁₀ chemical composition and concentration versus optical columnar measurements. Atmospheric Chemistry and Physics, 2014, 14, 2039-2054.	1.9	85
14	Influence of transport and trends in atmospheric CO2 at Lampedusa. Atmospheric Environment, 2009, 43, 3044-3051.	1.9	84
15	Large atmospheric shortwave radiative forcing by Mediterranean aerosols derived from simultaneous groundâ€based and spaceborne observations and dependence on the aerosol type and single scattering albedo. Journal of Geophysical Research, 2010, 115, .	3.3	81
16	Effects of desert dust and ozone on the ultraviolet irradiance at the Mediterranean island of Lampedusa during PAUR II. Journal of Geophysical Research, 2002, 107, PAU 2-1.	3.3	80
17	Review of ozone and temperature lidar validations performed within the framework of the Network for the Network for the Detection of Stratospheric Change. Journal of Environmental Monitoring, 2004, 6, 721.	2.1	80
18	Surface shortwave radiative forcing of different aerosol types in the central Mediterranean. Geophysical Research Letters, 2008, 35, .	1.5	72

#	Article	IF	CITATIONS
19	Measurements of Mediterranean aerosol radiative forcing and influence of the single scattering albedo. Journal of Geophysical Research, 2009, 114, .	3.3	72
20	A new approach to correct for absorbing aerosols in OMI UV. Geophysical Research Letters, 2009, 36, .	1.5	71
21	Shortwave and longwave radiative effects of the intense Saharan dust event of 25-26 March 2010 at Lampedusa (Mediterranean Sea). Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	69
22	Seasonal evolution of the tropospheric aerosol vertical profile in the central Mediterranean and role of desert dust. Journal of Geophysical Research, 2009, 114, .	3.3	66
23	Relationships linking primary production, sea ice melting, and biogenic aerosol in the Arctic. Atmospheric Environment, 2016, 136, 1-15.	1.9	66
24	Tropospheric aerosols in the Mediterranean: 2. Radiative effects through model simulations and measurements. Journal of Geophysical Research, 2003, 108, .	3.3	63
25	Constraining the ship contribution to the aerosol of the central Mediterranean. Atmospheric Chemistry and Physics, 2017, 17, 2067-2084.	1.9	59
26	Quantification of Saharan dust contribution to PM10 concentrations over Italy during 2003–2005. Atmospheric Environment, 2010, 44, 4181-4190.	1.9	52
27	UV Index monitoring in Europe. Photochemical and Photobiological Sciences, 2017, 16, 1349-1370.	1.6	52
28	Variability of mineral dust deposition in the western Mediterranean basin and south-east of France. Atmospheric Chemistry and Physics, 2016, 16, 8749-8766.	1.9	51
29	Methodology for determining aerosol optical depth from brewer 300–320-nm ozone measurements. Applied Optics, 2002, 41, 1805.	2.1	50
30	Characterization of PM ₁₀ sources in the central Mediterranean. Atmospheric Chemistry and Physics, 2015, 15, 13939-13955.	1.9	47
31	Direct radiative forcing of Saharan dust in the Mediterranean from measurements at Lampedusa Island and MISR space-borne observations. Journal of Geophysical Research, 2004, 109, .	3.3	45
32	Tropospheric aerosols in the Mediterranean: 1. Microphysical and optical properties. Journal of Geophysical Research, 2003, 108, .	3.3	44
33	Does solar ultraviolet radiation play a role in COVID-19 infection and deaths? An environmental ecological study in Italy. Science of the Total Environment, 2021, 757, 143757.	3.9	44
34	Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band. Geophysical Research Letters, 2008, 35, .	1.5	42
35	Altitudeâ€resolved shortwave and longwave radiative effects of desert dust in the Mediterranean during the GAMARF campaign: Indications of a net daily cooling in the dust layer. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3386-3407.	1.2	41
36	Comparison of ground-based and Total Ozone Mapping Spectrometer erythemal UV doses at the island of Lampedusa in the period 1998–2003: Role of tropospheric aerosols. Journal of Geophysical Research, 2005, 110, .	3.3	38

#	Article	IF	CITATIONS
37	The June 2007 Saharan dust event in the central Mediterranean: Observations and radiative effects in marine, urban, and sub-urban environments. Atmospheric Environment, 2011, 45, 5385-5393.	1.9	38
38	Absolute determination of the cross sections of ozone in the wavelength region 339–355 nm at temperatures 220–293 K. Journal of Geophysical Research, 1989, 94, 8485-8490.	3.3	36
39	Large aerosol effects on ozone photolysis in the Mediterranean. Atmospheric Environment, 2011, 45, 3937-3943.	1.9	36
40	The impact of Mount Etna sulfur emissions on the atmospheric composition and aerosol properties in the central Mediterranean: A statistical analysis over the period 2000–2013 based on observations and Lagrangian modelling. Atmospheric Environment, 2017, 148, 77-88.	1.9	35
41	On the radiative impact of aerosols on photolysis rates: comparison of simulations and observations in the Lampedusa island during the ChArMEx/ADRIMED campaign. Atmospheric Chemistry and Physics, 2016, 16, 1219-1244.	1.9	34
42	Experimental determination of cloud influence on the spectral UV irradiance and implications for biological effects. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1739-1746.	0.6	32
43	Volcanic aerosol layers observed by lidar at South Pole, September 1991–June 1992. Geophysical Research Letters, 1993, 20, 807-810.	1.5	31
44	Synergistic use of Lagrangian dispersion and radiative transfer modelling with satellite and surface remote sensing measurements for the investigation of volcanic plumes: the Mount Etna eruption of 25–27ÂOctober 2013. Atmospheric Chemistry and Physics, 2016, 16, 6841-6861.	1.9	31
45	The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO ₂ measurements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190513.	1.8	31
46	Lidar observations of the Pinatubo aerosol layer at Thule, Greenland. Geophysical Research Letters, 1994, 21, 1295-1298.	1.5	29
47	Relationship between methanesulfonate (MSâ~') in atmospheric particulate and remotely sensed phytoplankton activity in oligo-mesotrophic central Mediterranean Sea. Atmospheric Environment, 2013, 79, 681-688.	1.9	29
48	Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa. Atmospheric Chemistry and Physics, 2018, 18, 4377-4401.	1.9	25
49	First national intercomparison of solar ultraviolet radiometers in Italy. Atmospheric Measurement Techniques, 2011, 4, 1689-1703.	1.2	24
50	Atmospheric deposition of organic matter at a remote site in the central Mediterranean Sea: implications for the marine ecosystem. Biogeosciences, 2020, 17, 3669-3684.	1.3	24
51	Convective characteristics of the nocturnal urban boundary layer as observed with Doppler sodar and Raman lidar. Boundary-Layer Meteorology, 1996, 79, 375-391.	1.2	23
52	Validation of OMI satellite erythemal daily dose retrievals using ground-based measurements from fourteen stations. Remote Sensing of Environment, 2013, 128, 1-10.	4.6	23
53	Empirical correction of multifilter rotating shadowband radiometer (MFRSR) aerosol optical depths for the aerosol forward scattering and development of a long-term integrated MFRSR-Cimel dataset at Lampedusa. Applied Optics, 2015, 54, 2725.	0.9	23
54	Latitudinal distribution of stratospheric aerosols during the EASOE winter 1991/92. Geophysical Research Letters, 1994, 21, 1283-1286.	1.5	22

#	Article	IF	CITATIONS
55	Accounting for the Solar Radiation Influence on Downward Longwave Irradiance Measurements by Pyrgeometers. Journal of Atmospheric and Oceanic Technology, 2012, 29, 1629-1643.	0.5	22
56	Summertime surface PM ₁ aerosol composition and size by source region at the Lampedusa island in the central Mediterranean Sea. Atmospheric Chemistry and Physics, 2019, 19, 11123-11142.	1.9	22
57	Lidar observations of equatorial cirrus clouds at Mahé Seychelles. Journal of Geophysical Research, 2003, 108, .	3.3	20
58	Atmospheric methane in the Mediterranean: Analysis of measurements at the island of Lampedusa during 1995–2005. Atmospheric Environment, 2007, 41, 3877-3888.	1.9	20
59	Tropospheric halocompounds and nitrous oxide monitored at a remote site in the Mediterranean. Atmospheric Environment, 2010, 44, 4944-4953.	1.9	20
60	Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic. Climate Dynamics, 2012, 39, 953-969.	1.7	20
61	Interannual variability of atmospheric CO2 in the Mediterranean: measurements at the island of Lampedusa. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 83-93.	0.8	20
62	Middle atmospheric O ₃ , CO, N ₂ O, HNO ₃ , and temperature profiles during the warm Arctic winter 2001–2002. Journal of Geophysical Research, 2007, 112, .	3.3	19
63	Evolution of temperature, O ₃ , CO, and N ₂ O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and millimeterâ€wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland. Journal of Geophysical Research, 2010, 115, .	3.3	19
64	Sea-salt aerosol forecasts compared with daily measurements at the island of Lampedusa (Central) Tj ETQq0 0 0	rgBT /Ove 1.8	rlock 10 Tf 5 19
65	Absorption cross sections of ozone in the 590―to 610â€nm region at <i>T</i> = 230 K and <i>T</i> = 299 K. Journal of Geophysical Research, 1990, 95, 20565-20568.	3.3	18
66	Observations of correlated behavior of stratospheric ozone and aerosol at Thule during winter 1991â€1992. Geophysical Research Letters, 1992, 19, 1823-1826.	1.5	18
67	An improved algorithm for the determination of aerosol optical depth in the ultraviolet spectral range from Brewer spectrophotometer observations. Journal of Optics, 2006, 8, 849-855.	1.5	18
68	Seasonal variability of tropospheric aerosols in Rome. Atmospheric Research, 2012, 118, 205-214.	1.8	18
69	A wide-ranging investigation of the COVID-19 lockdown effects on the atmospheric composition in various Italian urban sites (AER – LOCUS). Urban Climate, 2021, 39, 100954.	2.4	18
70	Biogenic Aerosol in the Artic from Eight Years of MSA Data from Ny Ãlesund (Svalbard Islands) and Thule (Greenland). Atmosphere, 2019, 10, 349.	1.0	17
71	Tropospheric aerosols in the Mediterranean: 3. Measurements and modeling of actinic radiation profiles. Journal of Geophysical Research, 2003, 108, .	3.3	16
72	Estimate of surface direct radiative forcing of desert dust from atmospheric modulation of the aerosol optical depth. Atmospheric Chemistry and Physics, 2013, 13, 5647-5654.	1.9	16

#	Article	IF	CITATIONS
73	Backscatter measurements of stratospheric aerosols at Thule during January-February 1992. Geophysical Research Letters, 1994, 21, 1303-1306.	1.5	15
74	Sensitivity of shortwave radiative fluxes to the vertical distribution of aerosol single scattering albedo in the presence of a desert dust layer. Atmospheric Environment, 2010, 44, 2787-2791.	1.9	15
75	The GLAM Airborne Campaign across the Mediterranean Basin. Bulletin of the American Meteorological Society, 2018, 99, 361-380.	1.7	15
76	Lidar observations of polar stratospheric clouds over northern Greenland in the period 1990–1997. Journal of Geophysical Research, 2002, 107, AAC 6-1.	3.3	14
77	Sensitivity of the atmospheric temperature profile to the aerosol absorption in the presence of dust. Atmospheric Environment, 2014, 98, 331-336.	1.9	14
78	The RITMARE Italian Fixed-Point Observatory Network (IFON) for marine environmental monitoring: a case study. Journal of Operational Oceanography, 2016, 9, s202-s214.	0.6	14
79	A long-term time series of global and diffuse photosynthetically active radiation in the Mediterranean: interannual variability and cloud effects. Atmospheric Chemistry and Physics, 2018, 18, 7985-8000.	1.9	14
80	Lidar observations of polar stratospheric clouds at the South Pole: 1. Stratospheric unperturbed conditions, 1990. Journal of Geophysical Research, 1997, 102, 12937-12943.	3.3	13
81	Thermal structure of the winter middle atmosphere observed by lidar at Thule, Greenland, during 1993–1994. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59, 151-158.	0.6	13
82	Determination of ultraviolet cosine-corrected irradiances and aerosol optical thickness by combined measurements with a Brewer spectrophotometer and a multifilter rotating shadowband radiometer. Applied Optics, 2008, 47, 6142.	2.1	13
83	Operational considerations to improve total ozone measurements with a Microtops II ozone monitor. Atmospheric Measurement Techniques, 2012, 5, 759-769.	1.2	13
84	On the complexity of the boundary layer structure and aerosol vertical distribution in the coastal Mediterranean regions: a case study. Tellus, Series B: Chemical and Physical Meteorology, 2015, 67, 27721.	0.8	13
85	Stratospheric clouds at South Pole during 1988 2. Their evolution in relation to atmospheric structure and composition. Journal of Geophysical Research, 1992, 97, 5947-5952.	3.3	12
86	Observed influence of liquid cloud microphysical properties on ultraviolet surface radiation. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2429-2440.	1.2	12
87	Lidar observations of polar stratospheric clouds at the South Pole: 2. Stratospheric perturbed conditions, 1992 and 1993. Journal of Geophysical Research, 1997, 102, 12945-12955.	3.3	10
88	New insights on metals in the Arctic aerosol in a climate changing world. Science of the Total Environment, 2020, 741, 140511.	3.9	10
89	Clobal and Mediterranean climate change: a short summary. Annali Dell'Istituto Superiore Di Sanita, 2016, 52, 325-337.	0.2	10
90	On the Radiative Impact of Biomass-Burning Aerosols in the Arctic: The August 2017 Case Study. Remote Sensing, 2022, 14, 313.	1.8	10

#	Article	IF	CITATIONS
91	Estimation Of Atmospheric Water Vapour Flux Profiles In The Nocturnal Unstable Urban Boundary Layer With Doppler Sodar And Raman Lidar. Boundary-Layer Meteorology, 2002, 102, 39-62.	1.2	9
92	A comparison of Microtops II and satellite ozone measurements in the period 2001–2011. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 94, 5-12.	0.6	9
93	European Radiometry Buoy and Infrastructure (EURYBIA): A Contribution to the Design of the European Copernicus Infrastructure for Ocean Colour System Vicarious Calibration. Remote Sensing, 2020, 12, 1178.	1.8	9
94	Variability and trends in surface solar spectral ultraviolet irradiance in Italy: on the influence of geopotential height and lower-stratospheric ozone. Atmospheric Chemistry and Physics, 2021, 21, 18689-18705.	1.9	9
95	Spectral attenuation of global and diffuse UV irradiance and actinic flux by clouds. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 109-113.	1.0	8
96	Observation of lump structures in the nocturnal atmospheric boundary layer with Doppler sonar and Raman lidar. Geophysical Research Letters, 1995, 22, 2505-2508.	1.5	7
97	Ozone and aerosol correlated observations at Thule, Greenland, in the period 1991–1994. Journal of Geophysical Research, 1995, 100, 25965.	3.3	7
98	Stratospheric aerosols observed by lidar over northern Greenland in the aftermath of the Pinatubo eruption. Journal of Geophysical Research, 1998, 103, 13873-13891.	3.3	7
99	On the Importance of Spectral Responsivity of Robertson-Berger–type Ultraviolet Radiometers for Long-term Observations¶. Photochemistry and Photobiology, 2002, 76, 64.	1.3	7
100	Ground-based observations of solar radiation at three Italian sites, during the eclipse of 29 March, 2006: Signs of the environment impact on incoming global irradiance. Atmospheric Research, 2010, 96, 131-140.	1.8	7
101	Seasonal Variations of the Relative Optical Air Mass Function for Background Aerosol and Thin Cirrus Clouds at Arctic and Antarctic Sites. Remote Sensing, 2015, 7, 7157-7180.	1.8	7
102	Assessing the Quality of Shortwave and Longwave Irradiance Observations over the Ocean: One Year of High-Time-Resolution Measurements at the Lampedusa Oceanographic Observatory. Journal of Atmospheric and Oceanic Technology, 2019, 36, 2383-2400.	0.5	7
103	Satellite on-board temperatures: Proxy measurements of Earth's climate changes?. Geophysical Research Letters, 2005, 32, .	1.5	6
104	Determination of global and diffuse photosynthetically active radiation from a multifilter shadowband radiometer. Applied Optics, 2016, 55, 8280.	2.1	6
105	Observations of surface radiation and stratospheric processes at Thule Air Base, Greenland, during the IPY. Annals of Geophysics, 2014, 57, .	0.5	6
106	Factors controlling atmospheric DMS and its oxidation products (MSA and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 Chemistry and Physics, 2022, 22, 9245-9263.	0 147 Td (1.9	(nssSO _{4 6}
107	Observation of polar stratospheric clouds with the ABLE LIDAR during the APE-POLECAT flight of January 9, 1997. Journal of Aerosol Science, 2003, 34, 801-814.	1.8	5
108	Air–Sea Interaction in the Central Mediterranean Sea: Assessment of Reanalysis and Satellite	1.8	5

Observations. Remote Sensing, 2021, 13, 2188.

#	Article	IF	CITATIONS
109	Aerosol optical characteristics in the urban area of Rome, Italy, and their impact on the UV index. Atmospheric Measurement Techniques, 2022, 15, 1171-1183.	1.2	5
110	Satellite Multi/Hyper Spectral HR Sensors for Mapping the Posidonia oceanica in South Mediterranean Islands. Sustainability, 2021, 13, 13715.	1.6	3
111	Effects of atmospheric scattering and extinction on the retrieval of fluorescence and Cherenkov signals produced by extreme energy cosmic rays and neutrinos from space: role of lidar for their assessment and correction. Astroparticle Physics, 2004, 21, 337-357.	1.9	2
112	Application of a Common Methodology to Select in Situ CO2 Observations Representative of the Atmospheric Background to an Italian Collaborative Network. Atmosphere, 2021, 12, 246.	1.0	2
113	Vertical resolved aerosol characterization during the GAMARF campaign: Aerosol size distribution and radiative properties. , 2013, , .		1
114	Vertical profiles of shortwave and longwave aerosol direct radiative forcing during the GAMARF campaign at Lampedusa Island. , 2013, , .		1
115	Determination of Photosynthetically Active Radiation from multi-filter rotating shadowband measurements: Method and validation based on observations at Lampedusa (35.5°N, 12.6°E). AIP Conference Proceedings, 2017, , .	0.3	1
116	Computerized System for Nuclear Emergency Response in the Enea Nuclear Research Center of Frascati. Health Physics, 1991, 60, 763-771.	0.3	0
117	Ozone monitoring instrument satellite UV irradiance product correction using a global aerosol climatology. , 2009, , .		0
118	Determination of stratospheric temperature and density by GOMOS: Verification with respect to high latitude LIDAR profiles from Thule, Greenland. AIP Conference Proceedings, 2017, , .	0.3	0
119	Sea-Salt Aerosol Forecasts Over the Mediterranean Sea Evaluated by Daily Measurements in Lampedusa from 2006 to 2010. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 321-325.	0.1	0
120	Carbon Dioxide Time Series Analysis: A New Methodological Approach for Event Screening Categorisation. Springer INdAM Series, 2020, , 201-209.	0.4	0