
Dmitriy N Atochin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3547133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aging related impairment of brain microvascular bioenergetics involves oxidative phosphorylation and glycolytic pathways. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1410-1424.	2.4	18
2	Molecular Mechanisms for Regulation of Neutrophil Apoptosis under Normal and Pathological Conditions. Journal of Evolutionary Biochemistry and Physiology, 2021, 57, 429-450.	0.2	7
3	Sulfide catabolism ameliorates hypoxic brain injury. Nature Communications, 2021, 12, 3108.	5.8	71
4	Modified middle cerebral artery occlusion model provides detailed intraoperative cerebral blood flow registration and improves neurobehavioral evaluation. Journal of Neuroscience Methods, 2021, 358, 109179.	1.3	9
5	Brief exposure of skin to near-infrared laser augments early vaccine responses. Nanophotonics, 2021, 10, 3187-3197.	2.9	9
6	Neuroprotective Effects of a Novel Inhibitor of c-Jun N-Terminal Kinase in the Rat Model of Transient Focal Cerebral Ischemia. Cells, 2020, 9, 1860.	1.8	23
7	Alarmins and c-Jun N-Terminal Kinase (JNK) Signaling in Neuroinflammation. Cells, 2020, 9, 2350.	1.8	24
8	Antihypertensive activity of a new c-Jun N-terminal kinase inhibitor in spontaneously hypertensive rats. Hypertension Research, 2020, 43, 1068-1078.	1.5	10
9	Inhibitory effect of IQ-1S, a selective c-Jun N-terminal kinase (JNK) inhibitor, on phenotypical and cytokine-producing characteristics in human macrophages and T-cells. European Journal of Pharmacology, 2020, 878, 173116.	1.7	10
10	cGMP-dependent protein kinase I in vascular smooth muscle cells improves ischemic stroke outcome in mice. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2379-2391.	2.4	8
11	Somatostatin+/nNOS+ neurons are involved in delta electroencephalogram activity and cortical-dependent recognition memory. Sleep, 2019, 42, .	0.6	17
12	Protective Effects of a New C-Jun N-terminal Kinase Inhibitor in the Model of Global Cerebral Ischemia in Rats. Molecules, 2019, 24, 1722.	1.7	35
13	Synthesis, biological evaluation, and molecular modeling of 11H-indeno[1,2-b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime as c-Jun N-terminal kinase inhibitors. European Journal of Medicinal Chemistry, 2019, 161, 179-191.	2.6	51
14	Quantitative assessment of demyelination in ischemic stroke inÂvivo using macromolecular proton fraction mapping. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 919-931.	2.4	37
15	Cellâ€Based Drug Delivery and Use of Nanoâ€and Microcarriers for Cell Functionalization. Advanced Healthcare Materials, 2018, 7, 1700818.	3.9	75
16	The Adaptation Role of Serine/Threonine Kinase Akt1 in Anabolism of Muscular Tissue. Biology Bulletin Reviews, 2018, 8, 489-496.	0.3	0
17	Connexins and Nitric Oxide Inside and Outside Mitochondria: Significance for Cardiac Protection and Adaptation. Frontiers in Physiology, 2018, 9, 479.	1.3	12
18	c-Jun N-Terminal Kinases (JNKs) in Myocardial and Cerebral Ischemia/Reperfusion Injury. Frontiers in Pharmacology, 2018, 9, 715.	1.6	87

DMITRIY N ATOCHIN

#	Article	IF	CITATIONS
19	Haplotype analysis of endothelial nitric oxide synthase (NOS3) genetic variants and metabolic syndrome in healthy subjects and schizophrenia patients. International Journal of Obesity, 2018, 42, 2036-2046.	1.6	15
20	Oral nitrite restores age-dependent phenotypes in eNOS-null mice. JCI Insight, 2018, 3, .	2.3	9
21	An improved three-vessel occlusion model of global cerebral ischemia in rats. Brain Research Bulletin, 2017, 132, 213-221.	1.4	14
22	Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemiaâ€reperfusion injury. FASEB Journal, 2017, 31, 761-770.	0.2	27
23	Endothelial FcÎ ³ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice. Diabetes, 2016, 65, 1996-2005.	0.3	20
24	Neuroprotective effects of p-tyrosol after the global cerebral ischemia in rats. Phytomedicine, 2016, 23, 784-792.	2.3	23
25	A novel dual NO-donating oxime and c-Jun N-terminal kinase inhibitor protects against cerebral ischemia–reperfusion injury in mice. Neuroscience Letters, 2016, 618, 45-49.	1.0	43
26	Nitric oxide and mitochondria in metabolic syndrome. Frontiers in Physiology, 2015, 6, 20.	1.3	84
27	Phosphomimetic Modulation of eNOS Improves Myocardial Reperfusion and Mimics Cardiac Postconditioning in Mice. PLoS ONE, 2014, 9, e85946.	1.1	6
28	Role of adiponectin and proinflammatory gene expression in adipose tissue chronic inflammation in women with metabolic syndrome. Diabetology and Metabolic Syndrome, 2014, 6, 137.	1.2	19
29	Endothelial Dysfunction Abrogates the Efficacy of Normobaric Hyperoxia in Stroke. Journal of Neuroscience, 2014, 34, 15200-15207.	1.7	21
30	Through-skull fluorescence imaging of the brain in a new near-infrared window. Nature Photonics, 2014, 8, 723-730.	15.6	829
31	C-Reactive Protein Causes Insulin Resistance in Mice Through Fcγ Receptor IIB–Mediated Inhibition of Skeletal Muscle Glucose Delivery. Diabetes, 2013, 62, 721-731.	0.3	41
32	eNOS phosphorylation on serine 1176 affects insulin sensitivity and adiposity. Biochemical and Biophysical Research Communications, 2013, 431, 284-290.	1.0	34
33	Cerebral Blood Volume Affects Blood–Brain Barrier Integrity in an Acute Transient Stroke Model. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 898-905.	2.4	18
34	Hyperlipidemia Disrupts Cerebrovascular Reflexes and Worsens Ischemic Perfusion Defect. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 954-962.	2.4	49
35	Deficient eNOS Phosphorylation Is a Mechanism for Diabetic Vascular Dysfunction Contributing to Increased Stroke Size. Stroke, 2013, 44, 3183-3188.	1.0	53
36	Anti-Inflammatory Effect of Targeted Delivery of SOD to Endothelium: Mechanism, Synergism with NO Donors and Protective Effects In Vitro and In Vivo. PLoS ONE, 2013, 8, e77002.	1.1	50

DMITRIY N ATOCHIN

#	Article	IF	CITATIONS
37	A Novel Hydrogen Sulfide-releasing N-Methyl-d-Aspartate Receptor Antagonist Prevents Ischemic Neuronal Death. Journal of Biological Chemistry, 2012, 287, 32124-32135.	1.6	73
38	Role of Endothelial Nitric Oxide in Cerebrovascular Regulation. Current Pharmaceutical Biotechnology, 2011, 12, 1334-1342.	0.9	39
39	Optical coherence tomography for the quantitative study of cerebrovascular physiology. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1339-1345.	2.4	70
40	Delayed Paraplegia After Spinal Cord Ischemic Injury Requires Caspase-3 Activation in Mice. Stroke, 2011, 42, 2302-2307.	1.0	31
41	Nitric oxide synthase 3 deficiency limits adverse ventricular remodeling after pressure overload in insulin resistance. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H2093-H2101.	1.5	9
42	Endothelial nitric oxide synthase transgenic models of endothelial dysfunction. Pflugers Archiv European Journal of Physiology, 2010, 460, 965-974.	1.3	112
43	Soluble Guanylate Cyclase α1β1 Limits Stroke Size and Attenuates Neurological Injury. Stroke, 2010, 41, 1815-1819.	1.0	24
44	The Akt1-eNOS Axis Illustrates the Specificity of Kinase-Substrate Relationships in Vivo. Science Signaling, 2009, 2, ra41.	1.6	84
45	Contributions of nitric oxide synthase isoforms to pulmonary oxygen toxicity, local vs. mediated effects. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L984-L990.	1.3	23
46	Effects of Neuroglobin Overexpression on Acute Brain Injury and Long-Term Outcomes After Focal Cerebral Ischemia. Stroke, 2008, 39, 1869-1874.	1.0	131
47	Cerebrovascular Thromboprophylaxis in Mice by Erythrocyte-Coupled Tissue-Type Plasminogen Activator. Circulation, 2008, 118, 1442-1449.	1.6	77
48	Reduction of hippocampal cell death and proteolytic responses in tissue plasminogen activator knockout mice after transient global cerebral ischemia. Neuroscience, 2007, 150, 50-57.	1.1	25
49	Role of neuronal nitric oxide in the regulation of vasopressin expression and release in response to inhibition of catecholamine synthesis and dehydration. Neuroscience Letters, 2007, 426, 160-165.	1.0	11
50	The phosphorylation state of eNOS modulates vascular reactivity and outcome of cerebral ischemia in vivo. Journal of Clinical Investigation, 2007, 117, 1961-1967.	3.9	143
51	Tissue Plasminogen Activator Promotes Matrix Metalloproteinase-9 Upregulation After Focal Cerebral Ischemia. Stroke, 2005, 36, 1954-1959.	1.0	215
52	Mouse Model of Microembolic Stroke and Reperfusion. Stroke, 2004, 35, 2177-2182.	1.0	59
53	Contributions of Endothelial and Neuronal Nitric Oxide Synthases to Cerebrovascular Responses to Hyperoxia. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1219-1226.	2.4	88
54	Oxygen seizure latency and peroxynitrite formation in mice lacking neuronal or endothelial nitric oxide synthases. Neuroscience Letters, 2003, 344, 53-56.	1.0	59

#	Article	IF	CITATIONS
55	Rapid Cerebral Ischemic Preconditioning in Mice Deficient in Endothelial and Neuronal Nitric Oxide Synthases. Stroke, 2003, 34, 1299-1303.	1.0	108
56	Simultaneous Tissue PO2, Nitric Oxide, and Laser Doppler Blood Flow Measurements during Neuronal Activation of Optic Nerve. Advances in Experimental Medicine and Biology, 1998, 454, 159-164.	0.8	17