Boualem Boashash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3546988/publications.pdf

Version: 2024-02-01

140 6,019 36 70
papers citations h-index g-index

141 141 141 3488
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Neonatal EEG seizure detection using a new signal structural complexity measure based on matching pursuit decomposition with nonstationary dictionary. Computer Methods and Programs in Biomedicine, 2022, 224, 107014.	2.6	4
2	Design of an Optimal Piece-Wise Spline Wigner-Ville Distribution for TFD Performance Evaluation and Comparison. IEEE Transactions on Signal Processing, 2021, 69, 3963-3976.	3.2	21
3	Design and implementation of a multi-sensor newborn EEG seizure and background model with inter-channel field characterization., 2019, 90, 71-99.		4
4	A novel multivariate phase synchrony measure: Application to multichannel newborn EEG analysis., 2019, 84, 59-68.		17
5	Multisensor Time–Frequency Signal Processing MATLAB package: An analysis tool for multichannel non-stationary data. SoftwareX, 2018, 8, 53-58.	1.2	7
6	Efficient software platform TFSAP 7.1 and Matlab package to compute Time–Frequency Distributions and related Time-Scale methods with extraction of signal characteristics. SoftwareX, 2018, 8, 48-52.	1.2	11
7	An improved time–frequency noise reduction method using a psycho-acoustic Mel model. , 2018, 79, 199-212.		7
8	1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data. Neurocomputing, 2018, 275, 1308-1317.	3 . 5	327
9	Robust multisensor time–frequency signal processing: A tutorial review with illustrations of performance enhancement in selected application areas. , 2018, 77, 153-186.		31
10	Editorial for Special Issue on Reproducible Research. , 2018, 77, 1-4.		0
10			0
	Editorial for Special Issue on Reproducible Research. , 2018, 77, 1-4. Refining the ambiguity domain characteristics of non-stationary signals for improved time–frequency analysis: Test case of multidirectional and multicomponent piecewise LFM and HFM signals. , 2018, 83,		
11	Editorial for Special Issue on Reproducible Research. , 2018, 77, 1-4. Refining the ambiguity domain characteristics of non-stationary signals for improved time–frequency analysis: Test case of multidirectional and multicomponent piecewise LFM and HFM signals. , 2018, 83, 367-382. Designing high-resolution time–frequency and time–scale distributions for the analysis and classification of non-stationary signals: a tutorial review with a comparison of features	3.2	10
11 12	Editorial for Special Issue on Reproducible Research., 2018, 77, 1-4. Refining the ambiguity domain characteristics of non-stationary signals for improved time–frequency analysis: Test case of multidirectional and multicomponent piecewise LFM and HFM signals., 2018, 83, 367-382. Designing high-resolution time–frequency and time–scale distributions for the analysis and classification of non-stationary signals: a tutorial review with a comparison of features performance., 2018, 77, 120-152. An Improved Design of High-Resolution Quadratic Time–Frequency Distributions for the Analysis of Nonstationary Multicomponent Signals Using Directional Compact Kernels. IEEE Transactions on	3.2	10 54
11 12 13	Editorial for Special Issue on Reproducible Research., 2018, 77, 1-4. Refining the ambiguity domain characteristics of non-stationary signals for improved time–frequency analysis: Test case of multidirectional and multicomponent piecewise LFM and HFM signals., 2018, 83, 367-382. Designing high-resolution time–frequency and time–scale distributions for the analysis and classification of non-stationary signals: a tutorial review with a comparison of features performance., 2018, 77, 120-152. An Improved Design of High-Resolution Quadratic Time–Frequency Distributions for the Analysis of Nonstationary Multicomponent Signals Using Directional Compact Kernels. IEEE Transactions on Signal Processing, 2017, 65, 2701-2713. A distortion-free contrast enhancement technique based on a perceptual fusion scheme.		10 54 54
11 12 13	Editorial for Special Issue on Reproducible Research., 2018, 77, 1-4. Refining the ambiguity domain characteristics of non-stationary signals for improved time–frequency analysis: Test case of multidirectional and multicomponent piecewise LFM and HFM signals., 2018, 83, 367-382. Designing high-resolution time–frequency and time–scale distributions for the analysis and classification of non-stationary signals: a tutorial review with a comparison of features performance., 2018, 77, 120-152. An Improved Design of High-Resolution Quadratic Time–Frequency Distributions for the Analysis of Nonstationary Multicomponent Signals Using Directional Compact Kernels. IEEE Transactions on Signal Processing, 2017, 65, 2701-2713. A distortion-free contrast enhancement technique based on a perceptual fusion scheme. Neurocomputing, 2017, 226, 161-167.		10 54 54 4
11 12 13 14	Editorial for Special Issue on Reproducible Research., 2018, 77, 1-4. Refining the ambiguity domain characteristics of non-stationary signals for improved time–frequency analysis: Test case of multidirectional and multicomponent piecewise LFM and HFM signals., 2018, 83, 367-382. Designing high-resolution time–frequency and time–scale distributions for the analysis and classification of non-stationary signals: a tutorial review with a comparison of features performance., 2018, 77, 120-152. An Improved Design of High-Resolution Quadratic Time–Frequency Distributions for the Analysis of Nonstationary Multicomponent Signals Using Directional Compact Kernels. IEEE Transactions on Signal Processing, 2017, 65, 2701-2713. A distortion-free contrast enhancement technique based on a perceptual fusion scheme. Neurocomputing, 2017, 226, 161-167. Range-Doppler radar sensor fusion for fall detection., 2017,	3.5	10 54 54 4

#	Article	IF	Citations
19	Performance evaluation of time-frequency image feature sets for improved classification and analysis of non-stationary signals: Application to newborn EEG seizure detection. Knowledge-Based Systems, 2017, 132, 188-203.	4.0	26
20	A robust high-resolution time–frequency representation based on the local optimization of the short-time fractional Fourier transform. , 2017, 70, 125-144.		30
21	An automatic fast optimization of Quadratic Time-frequency Distribution using the hybrid genetic algorithm. Signal Processing, 2017, 131, 134-142.	2.1	20
22	Design of a Time-Frequency Algorithm for Automatic Eeg Artifact Removal. , 2016, , .		0
23	Multiâ€component instantaneous frequency estimation using locally adaptive directional time frequency distributions. International Journal of Adaptive Control and Signal Processing, 2016, 30, 429-442.	2.3	58
24	Wideband radar based fall motion detection for a generic elderly., 2016,,.		17
25	Radar fall detection using principal component analysis. Proceedings of SPIE, 2016, , .	0.8	11
26	Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study. Knowledge-Based Systems, 2016, 106, 38-50.	4.0	99
27	Radar fall detectors: a comparison. Proceedings of SPIE, 2016, , .	0.8	9
28	EEG background features that predict outcome in term neonates with hypoxic ischaemic encephalopathy: A structured review. Clinical Neurophysiology, 2016, 127, 285-296.	0.7	74
29	Principles of time–frequency feature extraction for change detection in non-stationary signals: Applications to newborn EEG abnormality detection. Pattern Recognition, 2015, 48, 616-627.	5.1	90
30	Time–frequency features for pattern recognition using high-resolution TFDs: A tutorial review. , 2015, 40, 1-30.		163
31	Micro-Doppler characteristics of elderly gait patterns with walking aids. , 2015, , .		3
32	High-resolution time-frequency distributions for fall detection. , 2015, , .		2
33	Human gait recognition with cane assistive device using quadratic time–frequency distributions. IET Radar, Sonar and Navigation, 2015, 9, 1224-1230.	0.9	30
34	Classification of fetal movement accelerometry through time-frequency features. , 2014, , .		6
35	Detection of neonatal EEG burst-suppression using a time-frequency approach. , 2014, , .		1
36	Non-invasivemonitoring of fetal movements using time-frequency features of accelerometry. , 2014, , .		10

#	Article	IF	Citations
37	Multicomponent noisy signal adaptive instantaneous frequency estimation using components time support information. IET Signal Processing, 2014, 8, 277-284.	0.9	24
38	Improved characterization of HRV signals based on instantaneous frequency features estimated from quadratic time–frequency distributions with data-adapted kernels. Biomedical Signal Processing and Control, 2014, 10, 153-165.	3.5	18
39	A review of time–frequency matched filter design with application to seizure detection in multichannel newborn EEG. , 2014, 28, 28-38.		38
40	Analysis of local time-frequency entropy features for nonstationary signal components time supports detection., 2014, 34, 56-66.		34
41	Measuring Time-Varying Information Flow in Scalp EEG Signals: Orthogonalized Partial Directed Coherence. IEEE Transactions on Biomedical Engineering, 2014, 61, 680-693.	2.5	70
42	Automated detection of perinatal hypoxia using time–frequency-based heart rate variability features. Medical and Biological Engineering and Computing, 2014, 52, 183-191.	1.6	13
43	Robust estimation of highly-varying nonlinear instantaneous frequency of monocomponent signals using a lower-order complex-time distribution. Signal Processing, 2013, 93, 3251-3260.	2.1	19
44	Time-Frequency Processing of Nonstationary Signals: Advanced TFD Design to Aid Diagnosis with Highlights from Medical Applications. IEEE Signal Processing Magazine, 2013, 30, 108-119.	4.6	96
45	Wavelet Denoising Based on the MAP Estimation Using the BKF Prior With Application to Images and EEG Signals. IEEE Transactions on Signal Processing, 2013, 61, 1880-1894.	3.2	37
46	A time–frequency based approach for generalized phase synchrony assessment in nonstationary multivariate signals. , 2013, 23, 780-790.		24
47	Instantaneous Frequency Estimation of Multicomponent Nonstationary Signals Using Multiview Time-Frequency Distributions Based on the Adaptive Fractional Spectrogram. IEEE Signal Processing Letters, 2013, 20, 157-160.	2.1	73
48	Fast and memory-efficient algorithms for computing quadratic time–frequency distributions. Applied and Computational Harmonic Analysis, 2013, 35, 350-358.	1.1	28
49	Detection of perinatal hypoxia using time-frequency analysis of heart rate variability signals. , 2013, , .		2
50	Time frequency signal analysis and processing toolbox update 6.2: An enhanced research platform with new advanced high-resolution TFDs. , $2013, \ldots$		4
51	A comparison of quadratic TFDs for entropy based detection of components time supports in multicomponent nonstationary signal mixtures. , 2013, , .		1
52	Principles of excellence in Engineering education applied to GCC/MENA Engineering Colleges and comparison with Australia and France: A thesis with analysis, results, observations. , 2013 , , .		1
53	Calibration of time features and frequency features in the time-frequency domain for improved detection and classification of seizure in newborn EEG signals. , 2012, , .		2
54	Generalised phase synchrony within multivariate signals: An emerging concept in time-frequency analysis. , 2012, , .		8

#	Article	IF	CITATIONS
55	Orthogonalized Partial Directed Coherence for Functional Connectivity Analysis of Newborn EEG. Lecture Notes in Computer Science, 2012, , 683-691.	1.0	9
56	Evaluation of the modified S-transform for time-frequency synchrony analysis and source localisation. Eurasip Journal on Advances in Signal Processing, 2012, 2012, .	1.0	79
57	A cross-terms geometry based method for components instantaneous frequency estimation using the Cross Wigner-Ville distribution. , 2012, , .		5
58	Performance evaluation of multi-component instantaneous frequency estimation techniques for heart rate variability analysis. , 2012 , , .		3
59	Design of a high-resolution separable-kernel quadratic TFD for improving newborn health outcomes using fetal movement detection., 2012,,.		19
60	Improving performance of deblocking techniques using image fusion. , 2012, , .		0
61	Improving the classification of newborn EEG time-frequency representations using a combined time-frequency signal and image approach. , 2012, , .		11
62	Generalized Mean Phase Coherence for asynchrony abnormality detection in multichannel newborn EEG. , 2012 , , .		1
63	Image fusion-based contrast enhancement. Eurasip Journal on Image and Video Processing, 2012, 2012, .	1.7	79
64	A methodology for time-frequency image processing applied to the classification of non-stationary multichannel signals using instantaneous frequency descriptors with application to newborn EEG signals. Eurasip Journal on Advances in Signal Processing, 2012, 2012, .	1.0	48
65	Time-Frequency Distributions Based on Compact Support Kernels: Properties and Performance Evaluation. IEEE Transactions on Signal Processing, 2012, 60, 2814-2827.	3.2	50
66	Time frequency and array processing of non-stationary signals. Eurasip Journal on Advances in Signal Processing, 2012, 2012, .	1.0	3
67	Automatic seizure detection based on the combination of newborn multi-channel EEG and HRV information. Eurasip Journal on Advances in Signal Processing, 2012, 2012, .	1.0	10
68	Instantaneous frequency based newborn EEG seizure characterisation. Eurasip Journal on Advances in Signal Processing, 2012, 2012, .	1.0	15
69	A nonparametric feature for neonatal EEG seizure detection based on a representation of pseudo-periodicity. Medical Engineering and Physics, 2012, 34, 437-446.	0.8	31
70	Efficient phase estimation for the classification of digitally phase modulated signals using the cross-WVD: a performance evaluation and comparison with the S-transform. Eurasip Journal on Advances in Signal Processing, 2012, 2012, .	1.0	8
71	On the Selection of Time-Frequency Features for Improving the Detection and Classification of Newborn EEG Seizure Signals and Other Abnormalities. Lecture Notes in Computer Science, 2012, , 634-643.	1.0	5
72	Iterative blocking artefact reduction based on local contrast information. , 2011, , .		2

#	Article	IF	Citations
73	Time-frequency signal and image processing of non-stationary signals with application to the classification of newborn EEG abnormalities. , $2011,\ldots$		16
74	An automatic time-frequency procedure for interference suppression by exploiting their geometrical features. , 2011, , .		6
75	Kalman filter-based time-varying cortical connectivity analysis of newborn EEG., 2011, 2011, 1423-6.		21
76	Compact support kernels based time-frequency distributions: Performance evaluation. , 2011, , .		6
77	EEG-based automatic epilepsy diagnosis using the instantaneous frequency with sub-band energies. , $2011, , .$		11
78	An Efficient Algorithm for Instantaneous Frequency Estimation of Nonstationary Multicomponent Signals in Low SNR. Eurasip Journal on Advances in Signal Processing, 2011, 2011, .	1.0	50
79	Time-Frequency Detection of Slowly Varying Periodic Signals with Harmonics: Methods and Performance Evaluation. Eurasip Journal on Advances in Signal Processing, 2011, 2011, .	1.0	10
80	Estimating the number of components of a multicomponent nonstationary signal using the short-term time-frequency Rényi entropy. Eurasip Journal on Advances in Signal Processing, 2011, 2011, .	1.0	67
81	An improved method for nonstationary signals components extraction based on the ICI rule. , 2011, , .		7
82	Accelerometer-based fetal movement detection. , 2011, 2011, 7877-80.		18
83	Detecting fetal movements using non-invasive accelerometers: A preliminary analysis. , 2010, , .		11
84	Ordered clustering: A way to simplify analysis of multichannel signals. , 2010, , .		1
85	Improved Discrete Definition of Quadratic Time-Frequency Distributions. IEEE Transactions on Signal Processing, 2010, 58, 906-911.	3.2	11
86	Multiple-view time–frequency distribution based on the empirical mode decomposition. IET Signal Processing, 2010, 4, 447.	0.9	14
87	Accurate and efficient implementation of the time–frequency matched filter. IET Signal Processing, 2010, 4, 428.	0.9	20
88	Editorial: Time-Frequency Approach to Radar Detection, Imaging, and Classification. IET Signal Processing, 2010, 4, 325.	0.9	11
89	Heart Rate Variability Time-Frequency Analysis for Newborn Seizure Detection. , 2009, , 95-121.		3
90	A New Discrete Analytic Signal for Reducing Aliasing in the Discrete Wigner-Ville Distribution. IEEE Transactions on Signal Processing, 2008, 56, 5427-5434.	3.2	24

#	Article	IF	Citations
91	Quadratic time-frequency distribution selection for seizure detection in the newborn., 2008, 2008, 923-6.		6
92	Detection of neonatal EEG seizure using multichannel matching pursuit., 2008, 2008, 907-10.		2
93	Comparing Two Time-Scale and Time-Frequency based Methods in Newborns' EEG Seizure Detection. , 2007, , .		1
94	A Feature Set for EEG Seizure Detection in the Newborn based on Seizure and Background Charactersitics. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 7-10.	0.5	2
95	Neonatal Seizure Detection and Localization using Time-Frequency Analysis of Multichannel EEG. , 2007, , .		4
96	Time-Frequency Analysis of Heart Rate Variability for Neonatal Seizure Detection. Eurasip Journal on Advances in Signal Processing, 2007, 2007, .	1.0	26
97	HRV Feature Selection for Neonatal Seizure Detection: A Wrapper Approach. , 2007, , .		5
98	Robust Time-Frequency Analysis of Newborn EEG Seizure Corrupted by Impulsive Artefacts. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 11-4.	0.5	2
99	A new neonatal seizure detection technique based on the time-frequency characteristics of the electroencephalogram., 2007,,.		1
100	A computationally efficient implementation of quadratic time-frequency distributions., 2007,,.		1
101	IF estimation for multicomponent signals using image processing techniques in the time–frequency domain. Signal Processing, 2007, 87, 1234-1250.	2.1	105
102	A Nonstationary Model of Newborn EEG. IEEE Transactions on Biomedical Engineering, 2007, 54, 19-28.	2.5	81
103	A joint time-frequency empirical mode decomposition for nonstationary signal separation. , 2007, , .		0
104	The T-class of time–frequency distributions: Time-only kernels with amplitude estimation. Journal of the Franklin Institute, 2006, 343, 661-675.	1.9	18
105	Separating More Sources Than Sensors Using Time-Frequency Distributions. Eurasip Journal on Advances in Signal Processing, 2005, 2005, 1.	1.0	82
106	Time–frequency based newborn EEG seizure detection using low and high frequency signatures. Physiological Measurement, 2004, 25, 935-944.	1.2	47
107	Signal Enhancement by Time-Frequency Peak Filtering. IEEE Transactions on Signal Processing, 2004, 52, 929-937.	3.2	105
108	Time-Frequency Feature Extraction of Newborn EEG Seizure Using SVD-Based Techniques. Eurasip Journal on Advances in Signal Processing, 2004, 2004, 1.	1.0	81

#	Article	IF	Citations
109	SVD-based newborn EEG seizure detection in the time-frequency domain. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 329-333.	0.4	1
110	High Performance Time-Frequency Distributions for Practical Applications. , 2003, , 135-175.		2
111	Adaptive instantaneous frequency estimation of multicomponent FM signals using quadratic time-frequency distributions. IEEE Transactions on Signal Processing, 2002, 50, 1866-1876.	3.2	105
112	A novel fingerprint image compression technique using wavelets packets and pyramid lattice vector quantization. IEEE Transactions on Image Processing, 2002, 11, 1365-1378.	6.0	28
113	The time-delay digital tanlock loop: performance analysis in additive Gaussian noise. Journal of the Franklin Institute, 2002, 339, 43-60.	1.9	12
114	Introduction to Time-Frequency Signal Analysis. , 2001, , 321-380.		2
115	A high-resolution quadratic time-frequency distribution for multicomponent signals analysis. IEEE Transactions on Signal Processing, 2001, 49, 2232-2239.	3.2	126
116	Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD: statistical performance in the presence of additive gaussian noise. IEEE Transactions on Signal Processing, 1999, 47, 2480-2490.	3.2	99
117	Interpolation of pitch contour using temporal decomposition. International Journal of Speech Technology, 1998, 2, 215-225.	1.4	0
118	Polynomial time–frequency distributions and time-varying higher order spectra: Application to the analysis of multicomponent FM signals and to the treatment of multiplicative noise. Signal Processing, 1998, 67, 1-23.	2.1	72
119	A human identification technique using images of the iris and wavelet transform. IEEE Transactions on Signal Processing, 1998, 46, 1185-1188.	3.2	867
120	The bootstrap and its application in signal processing. IEEE Signal Processing Magazine, 1998, 15, 56-76.	4.6	392
121	Comments on "The Cramer-Rao lower bounds for signals with constant amplitude and polynomial phase. IEEE Transactions on Signal Processing, 1998, 46, 1708-1709.	3.2	104
122	Aircraft flight parameter estimation based on passive acoustic techniques using the polynomial Wignerâ€"Ville distribution. Journal of the Acoustical Society of America, 1997, 102, 207-223.	0.5	59
123	<title>Polynomial Wigner-Ville distributions</title> ., 1995, , .		3
124	<title>Identification of a class of time-invariant and time-varying nonlinear systems under non-Gaussian excitation</title> ., 1995, 2563, 144.		2
125	<title>Modeling of newborn EEG data for seizure detection</title> ., 1995, , .		6
126	Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra. IEEE Transactions on Signal Processing, 1994, 42, 216-220.	3.2	203

#	Article	IF	Citations
127	<title>Bootstrapping confidence bands for the instantaneous frequency</title> ., 1994,,.		1
128	Use of the cross Wigner-Ville distribution for estimation of instantaneous frequency. IEEE Transactions on Signal Processing, 1993, 41, 1439-1445.	3.2	87
129	<title>Recent advances in nonstationary signal analysis: time-varying higher-order spectra and multilinear time-frequency signal analysis <math display="inline"></math> /title>. , 1993, , .</th><th></th><th>0</th></tr><tr><th>130</th><th></math> <title>Application of cumulant TVHOS to the analysis of composite FM signals in multiplicative and additive noise <math display="inline"></math> /title>. , 1993, , .</th><th></th><th>9</th></tr><tr><th>131</th><th>Time-varying polyspectra and reduced Wigner-Ville trispectrum. , 1992, , .</th><th></th><th>3</th></tr><tr><th>132</th><th>Comparison of time-frequency signal analysis techniques with application to speech recognition. , <math>1992, \ldots</math></th><th></th><th>3</th></tr><tr><th>133</th><th><title>Instantaneous quantities and uncertainty concepts for signal-dependent time-frequency distributions</title> ., 1991, 1566, 167.		9
134	<title>Time-varying higher order spectra</title> ., 1991,,.		14
135	Methods of signal classification using the images produced by the Wigner-Ville distribution. Pattern Recognition Letters, 1991, 12, 717-729.	2.6	46
136	A methodology for detection and classification of some underwater acoustic signals using time-frequency analysis techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38, 1829-1841.	2.0	119
137	<title>Algorithms for instantaneous frequency estimation: a comparative study</title> ., 1990, 1348, 126.		37
138	Note on the use of the Wigner distribution for time-frequency signal analysis. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36, 1518-1521.	2.0	176
139	An efficient real-time implementation of the Wigner-Ville distribution. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35, 1611-1618.	2.0	302
140	Application of the Wigner–Ville Distribution to Temperature Gradient Microstructure: A New Technique to Study Small-Scale Variations. Journal of Physical Oceanography, 1986, 16, 1997-2012.	0.7	81