Marie Baucher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3546966/publications.pdf

Version: 2024-02-01

49 papers

6,817 citations

331259 21 h-index 233125 45 g-index

49 all docs

49 docs citations

times ranked

49

8546 citing authors

#	Article	IF	CITATIONS
1	Glycobiology of the plant secondary cell wall dynamics. Advances in Botanical Research, 2022, , .	0.5	1
2	UGT72, a Major Glycosyltransferase Family for Flavonoid and Monolignol Homeostasis in Plants. Biology, 2022, 11, 441.	1.3	14
3	Leaf necrosis resulting from downregulation of poplar glycosyltransferase <i>UGT72A2 </i> . Tree Physiology, 2022, 42, 1084-1099.	1.4	6
4	The Xanthophyll Carotenoid Lutein Reduces the Invasive Potential of Pseudomonas aeruginosa and Increases Its Susceptibility to Tobramycin. International Journal of Molecular Sciences, 2022, 23, 7199.	1.8	3
5	Lignin: an innovative, complex, and highly flexible plant material/component., 2021,, 35-60.		1
6	A rapid and quantitative safraninâ€based fluorescent microscopy method to evaluate cell wall lignification. Plant Journal, 2020, 102, 1074-1089.	2.8	32
7	You Want it Sweeter: How Glycosylation Affects Plant Response to Oxidative Stress. Frontiers in Plant Science, 2020, 11, 571399.	1.7	32
8	Alterations in the phenylpropanoid pathway affect poplar ability for ectomycorrhizal colonisation and susceptibility to root-knot nematodes. Mycorrhiza, 2020, 30, 555-566.	1.3	9
9	Characterization of the UDP-glycosyltransferase UGT72 Family in Poplar and Identification of Genes Involved in the Glycosylation of Monolignols. International Journal of Molecular Sciences, 2020, 21, 5018.	1.8	25
10	UDP-GLYCOSYLTRANSFERASE 72E3 Plays a Role in Lignification of Secondary Cell Walls in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 6094.	1.8	16
11	Molecular Changes Concomitant with Vascular System Development in Mature Galls Induced by Root-Knot Nematodes in the Model Tree Host Populus tremula × P. alba. International Journal of Molecular Sciences, 2020, 21, 406.	1.8	10
12	A Molecular Blueprint of Lignin Repression. Trends in Plant Science, 2019, 24, 1052-1064.	4.3	25
13	Response of olive tree (Olea europaea L.cv. Chemlali) to infection with soilborne fungi. Journal of Plant Diseases and Protection, 2017, 124, 153-162.	1.6	9
14	<i>In vitro</i> micrografting of apical and axillary buds of cacao. Journal of Horticultural Science and Biotechnology, 2017, 92, 25-30.	0.9	10
15	Poplar–Root Knot Nematode Interaction: A Model for Perennial Woody Species. Molecular Plant-Microbe Interactions, 2016, 29, 560-572.	1.4	9
16	Escherichia colimazEF Toxin-Antitoxin System as a Tool to Target Cell Ablation in Plants. Journal of Molecular Microbiology and Biotechnology, 2016, 26, 277-283.	1.0	4
17	Pta <scp>RHE</scp> 1, a <i>Populus tremula</i> Â×Â <i>Populus alba </i> <scp>RING</scp> â€H2 protein of the <scp>ATL</scp> family, has a regulatory role in secondary phloem fibre development. Plant Journal, 2015, 82, 978-990.	2.8	17
18	Analysis of Genome Sequences from Plant Pathogenic Rhodococcus Reveals Genetic Novelties in Virulence Loci. PLoS ONE, 2014, 9, e101996.	1.1	54

#	Article	lF	CITATIONS
19	Does PtaRHE1, a poplar RING-H2 protein, play a role in water conduction through ABA signaling?. Plant Signaling and Behavior, 2014, 9, e27611.	1.2	1
20	A role for the miR396/ <scp>GRF</scp> network in specification of organ type during flower development, as supported by ectopic expression of <i><scp>P</scp>opulus trichocarpa miR396c</i> in transgenic tobacco. Plant Biology, 2013, 15, 892-898.	1.8	70
21	Insight into plant annexin function. Plant Signaling and Behavior, 2012, 7, 524-528.	1.2	35
22	European discussion forum on transgenic tree biosafety. Nature Biotechnology, 2012, 30, 37-38.	9.4	21
23	The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology (United Kingdom), 2011, 157, 2120-2132.	0.7	227
24	Virulence quenching with a prenylated isoflavanone renders the Malagasy legume <i>Dalbergia pervillei</i> resistant to <i>Rhodococcus fascians</i> Environmental Microbiology, 2011, 13, 1236-1252.	1.8	14
25	Ntann12 annexin expression is induced by auxin in tobacco roots. Journal of Experimental Botany, 2011, 62, 4055-4065.	2.4	30
26	Identification of Catechin as One of the Flavonoids from <i>Combretum albiflorum</i> Bark Extract That Reduces the Production of Quorum-Sensing-Controlled Virulence Factors in <i>Pseudomonas aeruginosa</i> PAO1. Applied and Environmental Microbiology, 2010, 76, 243-253.	1.4	288
27	Ectopic expression of PtaRHE1, encoding a poplar RING-H2 protein with E3 ligase activity, alters plant development and induces defence-related responses. Journal of Experimental Botany, 2010, 61, 297-310.	2.4	39
28	Metabolic Shift in the Phytopathogen Rhodococcus fascians in Response to Cell-Free Extract of Infected Tobacco Plant Tissues. Current Microbiology, 2009, 58, 483-487.	1.0	4
29	Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Molecular Biology, 2008, 66, 619-636.	2.0	247
30	From primary to secondary growth: origin and development of the vascular system. Journal of Experimental Botany, 2007, 58, 3485-3501.	2.4	88
31	The tobacco Ntann12 gene, encoding an annexin, is induced upon Rhodoccocus fascians infection and during leafy gall development. Molecular Plant Pathology, 2007, 8, 185-194.	2.0	43
32	Rhodococcus fascians infection accelerates progression of tobacco BYâ€2 cells into mitosis through rapid changes in plant gene expression. New Phytologist, 2007, 175, 140-154.	3.5	5
33	Molecular changes associated with the setting up of secondary growth in aspen. Journal of Experimental Botany, 2005, 56, 2211-2227.	2.4	43
34	Title is missing!. European Journal of Plant Pathology, 2003, 109, 327-330.	0.8	10
35	Title is missing!. Plant Growth Regulation, 2003, 40, 229-237.	1.8	8
36	LIGNINBIOSYNTHESIS. Annual Review of Plant Biology, 2003, 54, 519-546.	8.6	3,709

3

#	Article	IF	CITATIONS
37	Lignin: Genetic Engineering and Impact on Pulping. Critical Reviews in Biochemistry and Molecular Biology, 2003, 38, 305-350.	2.3	276
38	Expression of a poplar cDNA encoding a ferulate-5-hydroxylase/coniferaldehyde 5-hydroxylase increases S lignin deposition in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2002, 40, 1087-1096.	2.8	35
39	Lignin Biosynthesis in Poplar: Genetic Engineering and Effects on Kraft Pulping. Progress in Biotechnology, 2001, 18, 187-194.	0.2	7
40	Unravelling cell wall formation in the woody dicot stem. Plant Molecular Biology, 2001, 47, 239-274.	2.0	370
41	Biotechnology in trees: Towards improved paper pulping by lignin engineering. Euphytica, 2001, 118, 185-195.	0.6	45
42	Unravelling cell wall formation in the woody dicot stem. , 2001, , 239-274.		21
43	Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Molecular Biology, 1999, 39, 437-447.	2.0	215
44	Applications of molecular genetics for biosynthesis of novel lignins. Polymer Degradation and Stability, 1998, 59, 47-52.	2.7	10
45	Biosynthesis and Genetic Engineering of Lignin. Critical Reviews in Plant Sciences, 1998, 17, 125-197.	2.7	227
46	A novel lignin in poplar trees with a reduced caffeic acid/5â€hydroxyferulic acid <i>O</i> â€methyltransferase activity. Plant Journal, 1995, 8, 855-864.	2.8	221
47	One-step purification and characterization of a lignin-specific O-methyltransferase from poplar. Gene, 1993, 133, 213-217.	1.0	21
48	Biosynthesis and Genetic Engineering of Lignin. , 0, .		201
49	Lignin: Genetic Engineering and Impact on Pulping. , 0, .		9