Hanna Staroszczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3546801/publications.pdf

Version: 2024-02-01

471061 414034 1,055 40 17 32 citations h-index g-index papers 41 41 41 1445 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An optimal designed experiment for the alkaline hydrolysis of feather keratin. Environmental Science and Pollution Research, 2022, 29, 24145-24154.	2.7	8
2	Prediction of Bioactive Peptides from Chicken Feather and Pig Hair Keratins using (i>In Silico (i> Analysis Based on Fragmentomic Approach. Current Pharmaceutical Design, 2022, 28, 841-851.	0.9	4
3	Preparation and Characterization of Films Based on Disintegrated Bacterial Cellulose and Montmorillonite. Journal of Polymers and the Environment, 2021, 29, 1526-1541.	2.4	9
4	Enzymatic and Chemical Cross-Linking of Bacterial Cellulose/Fish Collagen Composites—A Comparative Study. International Journal of Molecular Sciences, 2021, 22, 3346.	1.8	18
5	Structural changes of bacterial cellulose due to incubation in conditions simulating human plasma in the presence of selected pathogens. Carbohydrate Polymers, 2021, 266, 118153.	5.1	2
6	Fish gelatin films containing aqueous extracts from phenolic-rich fruit pomace. LWT - Food Science and Technology, 2020, 117, 108613.	2.5	43
7	The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties. Carbohydrate Polymers, 2020, 236, 116023.	5.1	29
8	Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E25 as a new biological implant. Materials Science and Engineering C, 2019, 97, 302-312.	3.8	16
9	Effect of Hydroxypropylation and Betaâ€Amylase Treatment on Complexation of Debranched Starch With Naringenin. Starch/Staerke, 2018, 70, 1700263.	1.1	3
10	Solubilization of keratins and functional properties of their isolates and hydrolysates. Journal of Food Biochemistry, 2018, 42, e12494.	1.2	37
11	Effect of Acetylation and Betaâ€Amylase Treatment on Complexation of Debranched Starch with Naringenin. Starch/Staerke, 2018, 70, 1700262.	1.1	1
12	Investigation of an elutable N-propylphosphonic acid chitosan derivative composition with a chitosan matrix prepared from carbonic acid solution. Carbohydrate Polymers, 2018, 179, 196-206.	5.1	9
13	Starch–metal complexes and metal compounds. Journal of the Science of Food and Agriculture, 2018, 98, 2845-2856.	1.7	16
14	In vitro biodegradation of bacterial nanocellulose under conditions simulating human plasma in the presence of selected pathogenic microorganisms. Polimery, 2018, 63, 372-380.	0.4	4
15	Clayâ€filled starch films. Part I: Effect of clay kind and glycerol concentration on functional properties of composites. Starch/Staerke, 2017, 69, 1500325.	1.1	10
16	Fish gelatin-nanoclay films. Part I: Effect of a kind of nanoclays and glycerol concentration on mechanical and water barrier properties of nanocomposites. Journal of Food Processing and Preservation, 2017, 41, e13211.	0.9	11
17	A DSC and NMR-relaxation study of the molecular mobility of water protons interacting with chemically modified starches. Russian Journal of Physical Chemistry B, 2017, 11, 361-369.	0.2	3
18	Alternative Methods of Preparation of Soluble Keratin from Chicken Feathers. Waste and Biomass Valorization, 2017, 8, 1043-1048.	1.8	115

#	Article	IF	Citations
19	Antimicrobial properties of chitosan solutions, chitosan films and gelatin-chitosan films. Polimery, 2015, 61, 735-741.	0.4	21
20	Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 117, 707-712.	2.0	185
21	Rheology of potato starch chemically modified with microwave-assisted reactions. LWT - Food Science and Technology, 2013, 53, 249-254.	2.5	15
22	Molecular and structural characteristics of cod gelatin films modified with EDC and TGase. Food Chemistry, 2012, 130, 335-343.	4.2	106
23	Synthesis and characterisation of starch cuprate. Food Chemistry, 2011, 129, 1217-1223.	4.2	3
24	Microwave-assisted preparation of potato starch silicated with silicic acid. Carbohydrate Polymers, 2010, 81, 599-606.	5.1	24
25	Microwave-assisted synthesis of zinc derivatives of potato starch. Carbohydrate Polymers, 2010, 80, 962-969.	5.1	34
26	Microwave-assisted silication of potato starch. Carbohydrate Polymers, 2009, 77, 506-515.	5.1	17
27	Microwave-assisted boration of potato starch. Polimery, 2009, 54, 031-041.	0.4	13
28	Microwave-assisted solid-state sulphation of starch. E-Polymers, 2007, 7, .	1.3	8
29	Esterification of starch with sodium selenite and selenate. Carbohydrate Polymers, 2007, 69, 299-304.	5.1	16
30	Selected novel materials from polysaccharides. Polimery, 2006, 51, 517-523.	0.4	3
31	Facile synthesis of potato starch sulfate magnesium salts. E-Polymers, 2005, 5, .	1.3	3
32	Formation of carboxymethyl cellulose–casein complexes by electrosynthesis. Food Hydrocolloids, 2002, 16, 215-224.	5.6	33
33	Electrosynthesis of carboxymethyl cellulose – ovoalbumin complexes. Journal of Food Engineering, 2002, 53, 249-257.	2.7	7
34	Carboxymethyl cellulose–gelatin complexes. Carbohydrate Polymers, 2002, 50, 19-26.	5.1	46
35	Electrosynthesis of potato starch-casein complexes. International Journal of Food Science and Technology, 2001, 36, 509-515.	1.3	25
36	Electrosynthesis of potato starch–whey protein isolate complexes. Carbohydrate Polymers, 2001, 45, 89-94.	5.1	45

#	Article	IF	CITATIONS
37	Apple pectin complexes with whey protein isolate. Food Hydrocolloids, 2000, 14, 377-382.	5.6	69
38	Electrochemical synthesis of polysaccharide-protein complexes. Part 2. Apple pectin-casein complexes. Molecular Nutrition and Food Research, 1999, 43, 278-283.	0.0	19
39	Electrochemical Synthesis of Polysaccharide-Protein Complexes. Part 1: Preliminary Studies on Apple Pectin-Albumin Complexes. Starch/Staerke, 1995, 47, 219-223.	1.1	17
40	Studies in Carbohydrate Based Glues and Thickeners for Foodstuffs. Part I: Glucose - Sucrose - Apple Pectin Ternary System. Starch/Staerke, 1993, 45, 175-177.	1.1	8