
Nawal K Khadka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3546762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alpha-Crystallin Association with the Model of Human and Animal Eye Lens-Lipid Membranes is Modulated by Surface Hydrophobicity of Membranes. Current Eye Research, 2022, 47, 843-853.	1.5	8
2	An AFM Approach Applied in a Study of α-Crystallin Membrane Association: New Insights into Lens Hardening and Presbyopia Development. Membranes, 2022, 12, 522.	3.0	3
3	Membrane elasticity modulated by cholesterol in model of porcine eye lens-lipid membrane. Experimental Eye Research, 2022, 220, 109131.	2.6	5
4	Interaction of alpha-crystallin with four major phospholipids of eye lens membranes. Experimental Eye Research, 2021, 202, 108337.	2.6	14
5	Cholesterol and cholesterol bilayer domains inhibit binding of alpha-crystallin to the membranes made of the major phospholipids of eye lens fiber cell plasma membranes. Experimental Eye Research, 2021, 206, 108544.	2.6	10
6	Mechanical properties of the high cholesterol-containing membrane: An AFM study. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183625.	2.6	12
7	The helix 0 of endophilin modifies membrane material properties and induces local curvature. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183397.	2.6	7
8	γ-AApeptides–based Small Molecule Ligands That Disaggregate Human Islet Amyloid Polypeptide. Scientific Reports, 2020, 10, 95.	3.3	10
9	Lipopolysaccharide-Dependent Membrane Permeation and Lipid Clustering Caused by Cyclic Lipopeptide Colistin. ACS Omega, 2018, 3, 17828-17834.	3.5	43
10	Lipid Extraction by α-Synuclein Generates Semi-Transmembrane Defects and Lipoprotein Nanoparticles. ACS Omega, 2018, 3, 9586-9597.	3.5	20
11	Modulation of lipid membrane structural and mechanical properties by a peptidomimetic derived from reduced amide scaffold. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 734-744.	2.6	18
12	Polycarbonates with Potent and Selective Antimicrobial Activity toward Gram-Positive Bacteria. Biomacromolecules, 2017, 18, 87-95.	5.4	76
13	Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection. Journal of Applied Physics, 2016, 119, .	2.5	28
14	Kinetic Defects Induced by Melittin in Model Lipid Membranes: A Solution Atomic Force Microscopy Study. Journal of Physical Chemistry B, 2016, 120, 4625-4634.	2.6	26
15	Influenza M2 Transmembrane Domain Senses Membrane Heterogeneity and Enhances Membrane Curvature. Langmuir, 2016, 32, 6730-6738.	3.5	15
16	Polyglutamine aggregates impair lipid membrane integrity and enhance lipid membrane rigidity. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 661-670.	2.6	20
17	Sub-ten-nanometer heterogeneity of solid supported lipid membranes determined by solution atomic force microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 181-188.	2.6	17
18	Interactions of the Anticancer Drug Tamoxifen with Lipid Membranes. Biophysical Journal, 2015, 108, 2492-2501.	0.5	55

#	Article	IF	CITATIONS
19	Macroscopic and Nanoscopic Heterogeneous Structures in a Three-Component Lipid Bilayer Mixtures Determined by Atomic Force Microscopy. Langmuir, 2015, 31, 12417-12425.	3.5	28
20	Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations. Soft Matter, 2015, 11, 130-138.	2.7	65