Theresia K Ralebitso-Senior

List of Publications by Citations

 $\textbf{Source:} \ \text{https://exaly.com/author-pdf/3546612/theresia-} k-rale bitso-senior-publications-by-citations.pdf$

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

29 469 9 21 g-index

34 540 3.6 avg, IF L-index

#	Paper	IF	Citations
29	Biochar: Carbon Sequestration, Land Remediation, and Impacts on Soil Microbiology. <i>Critical Reviews in Environmental Science and Technology</i> , 2012 , 42, 2311-2364	11.1	116
28	Application of biological indicators to assess recovery of hydrocarbon impacted soils. <i>Soil Biology and Biochemistry</i> , 2007 , 39, 164-177	7.5	115
27	Microbial aspects of atrazine degradation in natural environments. <i>Biodegradation</i> , 2002 , 13, 11-9	4.1	74
26	Waste gas biofiltration: advances and limitations of current approaches in microbiology. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	63
25	Changes to soil bacterial profiles as a result of Sus scrofa domesticus decomposition. <i>Forensic Science International</i> , 2014 , 245, 101-6	2.6	17
24	16S rDNA-based characterization of BTX-catabolizing microbial associations isolated from a South African sandy soil. <i>Biodegradation</i> , 2000 , 11, 351-7	4.1	13
23	Soil fungal community shift evaluation as a potential cadaver decomposition indicator. <i>Forensic Science International</i> , 2015 , 257, 155-159	2.6	12
22	A comparative in situ decomposition study using still born piglets and leaf litter from a deciduous forest. <i>Forensic Science International</i> , 2017 , 276, 85-92	2.6	9
21	Catalytic Activities of Multimeric G-Quadruplex DNAzymes. <i>Catalysts</i> , 2019 , 9, 613	4	9
20	Shifts in soil biodiversity-A forensic comparison between Sus scrofa domesticus and vegetation decomposition. <i>Science and Justice - Journal of the Forensic Science Society</i> , 2015 , 55, 402-7	2	9
19	An RNA-based analysis of changes in biodiversity indices in response to Sus scrofa domesticus decomposition. <i>Forensic Science International</i> , 2014 , 241, 190-4	2.6	9
18	Microbial Ecology Analysis of Biochar-Augmented Soils 2016 , 1-40		5
17	Soil metabarcoding identifies season indicators and differentiators of pig and Agrostis/Festuca spp. decomposition. <i>Forensic Science International</i> , 2018 , 288, 53-58	2.6	4
16	Atrazine catabolism by a combined bacterial association (KRA30) under carbon- and nitrogen-limitations in a retentostat. <i>Journal of Applied Microbiology</i> , 2003 , 94, 1043-51	4.7	4
15	Microbial ecogenomics and forensic archaeology: new methods for investigating clandestine gravesites. <i>Human Remains and Violence</i> , 2016 , 2, 41-57	0.4	3
14	Feedstock and Production Parameters 2016 , 41-54		3
13	Assessing Subsurface Decomposition and Potential Impacts on Forensic Investigations 2018 , 145-176		1

LIST OF PUBLICATIONS

12	Environmental Biotechnology: Current Advances, New Knowledge Gaps, and Emerging Issues. <i>BioMed Research International</i> , 2015 , 2015, 814529	3	1
11	Insights into bacterial associations catabolizing atrazine by culture-dependent and molecular approaches. <i>World Journal of Microbiology and Biotechnology</i> , 2003 , 19, 59-67	4.4	1
10	Implications of the Investigative Animal Model 2018 , 87-111		Ο
9	The Method Debate 2018 , 61-86		O
8	Summary: An Assessment of Achievements, Limitations, and Potential of Forensic Ecogenomics 2018 , 211-234		O
7	Determining the impacts of environmental parameters on model microbial community dynamics isolated from Rustumihia WWTP/Iraq. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 871, 012015	0.4	
6	From Experimental Work to Real Crime Scenes and the Courts 2018 , 177-209		
5	Profiling of Successional Microbial Community Structure and Composition to Identify Exhumed Gravesoil Preliminary Study. <i>Forensic Sciences</i> , 2022 , 2, 130-143		
4	Characterisation of indigenous microbial community isolated from wastewater treatment phases Baghdad/Iraq. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 871, 012016	0.4	
3	DGGE-Profiling of Culturable Biochar-Enriched Microbial Communities 2016 , 78-108		
2	Microbial Ecology of the Rhizosphere and Its Response to Biochar Augmentation 2016 , 199-220		
1	Summation of the Microbial Ecology of Biochar Application 2016 , 293-311		