List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3546442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Properties and Crystal and Electronic Structures of Spinel αMgCo _{2â^} <i>_x</i> Mn <i>_{x<td>;</td>}</i> 1.4	;	O <sub&g 2</sub&g
2	Room Temperature Operation of Magnesium Rechargeable Batteries with a Hydrothermally Treated ZnMnO ₃ Defect Spinel Cathode. Electrochemistry, 2022, 90, 027005-027005.	1.4	6
3	Ultrathin Magnesium Metal Anode – An Essential Component for Highâ€Energyâ€Density Magnesium Battery Materialization. Batteries and Supercaps, 2022, 5, .	4.7	7
4	On the Practical Applications of the Magnesium Fluorinated Alkoxyaluminate Electrolyte in Mg Battery Cells. ACS Applied Materials & Interfaces, 2022, 14, 26766-26774.	8.0	19
5	(Digital Presentation) Mass Spectroscopic Products Analysis during Charging of Li-O ₂ Cell with Tegdme Based Electrolyte. ECS Meeting Abstracts, 2022, MA2022-01, 58-58.	0.0	0
6	Remarkable electrochemical and ion-transport characteristics of magnesium-fluorinated alkoxyaluminate–diglyme electrolytes for magnesium batteries. Materials Advances, 2021, 2, 6283-6296.	5.4	30
7	Effective 3D open-channel nanostructures of a MgMn ₂ O ₄ positive electrode for rechargeable Mg batteries operated at room temperature. Journal of Materials Chemistry A, 2021, 9, 6851-6860.	10.3	19
8	Understanding the Reductive Decomposition of Highly Concentrated Li Salt/Sulfolane Electrolytes during Li Deposition and Dissolution. ACS Applied Energy Materials, 2021, 4, 1851-1859.	5.1	24
9	Revisiting Delithiated Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13<!--<br-->Structural Analysis and Cathode Properties in Magnesium Rechargeable Battery Applications. Electrochemistry, 2021, 89, 329-333.}	sub>0 1.4	<sub>< td=""></sub><>
10	Promoting Reversible Cathode Reactions in Magnesium Rechargeable Batteries Using Metastable Cubic MgMn ₂ O ₄ Spinel Nanoparticles. ACS Applied Nano Materials, 2021, 4, 8328-8333.	5.0	17
11	Effect of Al substitution on structure and cathode performance of MgMn2O4 spinel for magnesium rechargeable battery. Journal of Alloys and Compounds, 2021, 872, 159723.	5.5	21
12	Phase Transition Behavior of MgMn ₂ O ₄ Spinel Oxide Cathode during Magnesium Ion Insertion. Chemistry of Materials, 2021, 33, 1006-1012.	6.7	24
13	Tuning the performance of a Mg negative electrode through grain boundaries and alloying toward the realization of Mg batteries. Journal of Materials Chemistry A, 2021, 9, 15207-15216.	10.3	10
14	Phenylphosphonate surface functionalisation of MgMn ₂ O ₄ with 3D open-channel nanostructures for composite slurry-coated cathodes of rechargeable magnesium batteries operated at room temperature. RSC Advances, 2021, 11, 19076-19082.	3.6	14
15	Structured spinel oxide positive electrodes of magnesium rechargeable batteries: High rate performance and high cyclability by interconnected bimodal pores and vanadium oxide coating. Journal of Alloys and Compounds, 2020, 816, 152556.	5.5	26
16	Critical Issues of Fluorinated Alkoxyborate-Based Electrolytes in Magnesium Battery Applications. ACS Applied Materials & Interfaces, 2020, 12, 39135-39144.	8.0	65
17	Synthesis, cathode property and crystal, electronic and local structures of Mg2Mo3O8 as Mg rechargeable battery cathode material. Solid State Ionics, 2020, 354, 115413.	2.7	5
18	Metallurgical approach to enhance the electrochemical activity of magnesium anodes for magnesium rechargeable batteries. Chemical Communications, 2020, 56, 12122-12125.	4.1	30

#	Article	IF	CITATIONS
19	Effect of Interaction among Magnesium Ions, Anion, and Solvent on Kinetics of the Magnesium Deposition Process. Journal of Physical Chemistry C, 2020, 124, 28510-28519.	3.1	19
20	Determining Factor on the Polarization Behavior of Magnesium Deposition for Magnesium Battery Anode. ACS Applied Materials & Interfaces, 2020, 12, 25775-25785.	8.0	31
21	Crystal Structures and Cathode Properties of Chemically and Electrochemically Delithiated Li _x Ni _{0.5} Mn _{0.5} O ₂ with Applications to Mg Rechargeable Batteries. Journal of the Electrochemical Society, 2020, 167, 100547.	2.9	9
22	Spinel-Type MgMn ₂ O ₄ Nanoplates with Vanadate Coating for a Positive Electrode of Magnesium Rechargeable Batteries. Langmuir, 2020, 36, 8537-8542.	3.5	22
23	Critical Issues of Fluorinated Alkoxyborate-Based Electrolytes in Magnesium Battery Applications. ECS Meeting Abstracts, 2020, MA2020-02, 864-864.	0.0	0
24	Application of Spinel MgMn2-X Al x O4 As Cathode for Mg Rechargeable Battery. ECS Meeting Abstracts, 2020, MA2020-02, 3473-3473.	0.0	0
25	Strategy and Issue for Li-S Batteries with High Energy Density. ECS Meeting Abstracts, 2020, MA2020-02, 3529-3529.	0.0	Ο
26	Crystal Structures and Cathode Properties of Delithiated LixNi0.5Mn0.5O2 for Mg Rechargeable Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 214-214.	0.0	0
27	Magnesium Storage Performance and Mechanism of 2Dâ€Ultrathin Nanosheetâ€Assembled Spinel Mgln ₂ S ₄ Cathode for Highâ€Temperature Mg Batteries. Small, 2019, 15, e1902236.	10.0	11
28	Magnesium Batteries: Magnesium Storage Performance and Mechanism of 2Dâ€Ultrathin Nanosheetâ€Assembled Spinel MgIn ₂ S ₄ Cathode for Highâ€Temperature Mg Batteries (Small 36/2019). Small, 2019, 15, 1970191.	10.0	0
29	Modifications in coordination structure of Mg[TFSA] ₂ -based supporting salts for high-voltage magnesium rechargeable batteries. Physical Chemistry Chemical Physics, 2019, 21, 12100-12111.	2.8	50
30	Li-ion hopping conduction in highly concentrated lithium bis(fluorosulfonyl)amide/dinitrile liquid electrolytes. Physical Chemistry Chemical Physics, 2019, 21, 9759-9768.	2.8	77
31	Ionic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes. Physical Chemistry Chemical Physics, 2019, 21, 5097-5105.	2.8	35
32	Solvate Ionic Liquids for Li, Na, K, and Mg Batteries. Chemical Record, 2019, 19, 708-722.	5.8	42
33	Interfacial Behavior of Magnesium Ions at Electrode/Electrolyte Interface during Magnesium Deposition Reaction. ECS Meeting Abstracts, 2019, , .	0.0	0
34	Magnesium bis(trifluoromethanesulfonyl)amide complexes with triglyme and asymmetric homologues: phase behavior, coordination structures and melting point reduction. Physical Chemistry Chemical Physics, 2018, 20, 7998-8007.	2.8	19
35	Enhanced electrochemical properties of MgCo2O4 mesocrystals as a positive electrode active material for Mg batteries. Journal of Alloys and Compounds, 2018, 739, 793-798.	5.5	38
36	Polymer Electrolytes Containing Solvate Ionic Liquids: A New Approach To Achieve High Ionic Conductivity, Thermal Stability, and a Wide Potential Window. Chemistry of Materials, 2018, 30, 252-261.	6.7	60

#	Article	IF	CITATIONS
37	Role of Coordination Structure of Magnesium Ions on Charge and Discharge Behavior of Magnesium Alloy Electrode. Journal of Physical Chemistry C, 2018, 122, 25204-25210.	3.1	30
38	Glyme–Sodium Bis(fluorosulfonyl)amide Complex Electrolytes for Sodium Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 16589-16599.	3.1	34
39	Electrochemical Properties of Lithium-Air Secondary Batteries with Catalyst-Modified Carbon Electrodes. ECS Meeting Abstracts, 2018, , .	0.0	0
40	Effects of Co-Substitution of Layered Perovskite Lsfo on Oer Activity in Alkaline Media. ECS Meeting Abstracts, 2018, , .	0.0	0
41	Ionic Liquid Based Electrolytes for High Voltage Magnesium Rechargeable Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
42	A key concept of utilization of both non-Grignard magnesium chloride and imide salts for rechargeable Mg battery electrolytes. Journal of Materials Chemistry A, 2017, 5, 3152-3156.	10.3	46
43	Effect of the cation on the stability of cation–glyme complexes and their interactions with the [TFSA] ^{â^'} anion. Physical Chemistry Chemical Physics, 2017, 19, 18262-18272.	2.8	49
44	A Key Concept of Utilization of Both Magnesium Chloride and Imide Salts for High Temperature Rechargebale Mg Battery Electrolytes. ECS Meeting Abstracts, 2017, , .	0.0	0
45	Dissociation and Diffusion of Glyme-Sodium Bis(trifluoromethanesulfonyl)amide Complexes in Hydrofluoroether-Based Electrolytes for Sodium Batteries. Journal of Physical Chemistry C, 2016, 120, 23339-23350.	3.1	30
46	Fluorine-free salts for aqueous lithium-ion and sodium-ion battery electrolytes. RSC Advances, 2016, 6, 85194-85201.	3.6	15
47	Haloaluminate-Free Cationic Aluminum Complexes: Structural Characterization and Physicochemical Properties. Journal of Physical Chemistry C, 2016, 120, 21285-21292.	3.1	25
48	Thermal and Electrochemical Stability of Tetraglyme–Magnesium Bis(trifluoromethanesulfonyl)amide Complex: Electric Field Effect of Divalent Cation on Solvate Stability. Journal of Physical Chemistry C, 2016, 120, 1353-1365.	3.1	88
49	Li ⁺ Local Structure in Hydrofluoroether Diluted Li-Glyme Solvate Ionic Liquid. Journal of Physical Chemistry B, 2016, 120, 3378-3387.	2.6	81
50	Li ⁺ Solvation and Ionic Transport in Lithium Solvate Ionic Liquids Diluted by Molecular Solvents. Journal of Physical Chemistry C, 2016, 120, 15792-15802.	3.1	114
51	Lithium-tin Alloy/Sulfur Battery with a Solvate Ionic Liquid Electrolyte. Electrochemistry, 2015, 83, 914-917.	1.4	17
52	Li ⁺ solvation in glyme–Li salt solvate ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 8248-8257.	2.8	222
53	Extraordinary aluminum coordination in a novel homometallic double complex salt. Dalton Transactions, 2015, 44, 11259-11263.	3.3	14
54	Hydrogen-bonding supramolecular protic salt as an "all-in-one―precursor for nitrogen-doped mesoporous carbons for CO2 adsorption. Nano Energy, 2015, 13, 376-386.	16.0	64

#	Article	IF	CITATIONS
55	Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-Ion and Li-Sulfur Batteries. Journal of Physical Chemistry C, 2015, 119, 3957-3970.	3.1	135
56	Effect of Ionic Size on Solvate Stability of Glyme-Based Solvate Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 1523-1534.	2.6	92
57	Pentaglyme–K salt binary mixtures: phase behavior, solvate structures, and physicochemical properties. Physical Chemistry Chemical Physics, 2015, 17, 2838-2849.	2.8	27
58	Li+ Ion Transport in Polymer Electrolytes Based on a Glyme-Li Salt Solvate Ionic Liquid. Electrochimica Acta, 2015, 175, 5-12.	5.2	70
59	Al conductive haloaluminate-free non-aqueous room-temperature electrolytes. Journal of Materials Chemistry A, 2015, 3, 12230-12239.	10.3	52
60	Structures of [Li(glyme)] ⁺ complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2015, 17, 126-129.	2.8	87
61	Criteria for solvate ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 8761.	2.8	240
62	Physicochemical properties of pentaglyme–sodium bis(trifluoromethanesulfonyl)amide solvate ionic liquid. Physical Chemistry Chemical Physics, 2014, 16, 11737-11746.	2.8	60
63	Chelate Effects in Glyme/Lithium Bis(trifluoromethanesulfonyl)amide Solvate Ionic Liquids, Part 2: Importance of Solvate-Structure Stability for Electrolytes of Lithium Batteries. Journal of Physical Chemistry C, 2014, 118, 17362-17373.	3.1	137
64	Mechanism of Li Ion Desolvation at the Interface of Graphite Electrode and Glyme–Li Salt Solvate Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 20246-20256.	3.1	155
65	Chelate Effects in Glyme/Lithium Bis(trifluoromethanesulfonyl)amide Solvate Ionic Liquids. I. Stability of Solvate Cations and Correlation with Electrolyte Properties. Journal of Physical Chemistry B, 2014, 118, 5144-5153.	2.6	194
66	Phase Diagrams and Solvate Structures of Binary Mixtures of Glymes and Na Salts. Journal of Physical Chemistry B, 2013, 117, 15072-15085.	2.6	63
67	Anionic Effects on Solvate Ionic Liquid Electrolytes in Rechargeable Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 20509-20516.	3.1	166
68	Linker-Length Dependence of Crystal Structures and Thermal Properties of Bis(imidazolium) Salts with Tetrafluoroborate Anion. Bulletin of the Chemical Society of Japan, 2012, 85, 599-605.	3.2	11
69	Comparison between Cycloalkyl- and <i>n</i> -Alkyl-Substituted Imidazolium-Based Ionic Liquids in Physicochemical Properties and Reorientational Dynamics. Journal of Physical Chemistry B, 2012, 116, 2059-2064.	2.6	26
70	Linker-length dependence of the reorientational dynamics and viscosity of bis(imidazolium)-based ionic liquids incorporating bis(trifluoromethanesulfonyl)amide anions. Chemical Physics Letters, 2012, 543, 72-75.	2.6	13
71	Effects of Cyclic-Hydrocarbon Substituents and Linker Length on Physicochemical Properties and Reorientational Dynamics of Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2012, 116, 2090-2095.	2.6	9
72	Comparison between Dicationic and Monocationic Ionic Liquids: Liquid Density, Thermal Properties, Surface Tension, and Shear Viscosity. Journal of Chemical & Engineering Data, 2011, 56, 2453-2459.	1.9	314

#	Article	IF	CITATIONS
73	Correlation between hydrocarbon flexibility and physicochemical properties for cyclohexyl-imidazolium based ionic liquids studied by 1H and 13C NMR. Chemical Physics Letters, 2011, 507, 100-104.	2.6	12
74	Preparation of conductive Cu1.5Mn1.5O4 and Mn3O4 spinel mixture powders as positive active materials in rechargeable Mg batteries operative at room temperature. Journal of Sol-Gel Science and Technology, 0, , .	2.4	0