Elena S Yurina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3546406/publications.pdf

Version: 2024-02-01

		1163117	996975
36	267	8	15
papers	citations	h-index	g-index
39	39	39	246
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Macroheterocyclic Compounds - a Key Building Block in New Functional Materials and Molecular Devices. Macroheterocycles, 2020, 13, 311-467.	0.5	91
2	First tellurium-containing phthalocyanine analogues: strong effect of tellurium on spectral, redox and conductivity properties of porphyrazines with annulated chalcogenodiazole ring(s). Chemical Communications, 2012, 48, 10135.	4.1	21
3	Effect of irradiation spectral range on porphyrin—Protein complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 299-305.	3.9	18
4	Interactions of tetracationic porphyrins with DNA and their effects on DNA cleavage. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 235-241.	3.9	18
5	Features of interaction of tetraiodide meso-tetra(N-methyl-3-pyridyl)porphyrin with bovine serum albumin. Journal of Molecular Liquids, 2018, 265, 664-667.	4.9	17
6	The interaction of 5,10,15,20-tetrakis [4- (2,3,4,6-tetra-O-acetyl- \hat{l}^2 -D-galactopyranosyl) phenyl] porphine with biopolymers. Dyes and Pigments, 2019, 162, 266-271.	3.7	10
7	A new strategy for targeted delivery of non-water-soluble porphyrins in chitosan-albumin capsules. Colloid and Polymer Science, 2017, 295, 2173-2182.	2.1	9
8	Possible therapeutic targets and promising drugs based on unsymmetrical hetaryl-substituted porphyrins to combat SARS-CoV-2. Journal of Pharmaceutical Analysis, 2021, 11, 691-698.	5.3	8
9	A pH-controllable protein container for the delivery of hydrophobic porphyrins. Mendeleev Communications, 2017, 27, 47-49.	1.6	7
10	Thermochemical research of chitosan complexes with sulfonated metallophthalocyanines. International Journal of Biological Macromolecules, 2019, 137, 1153-1160.	7.5	6
11	Albumin aggregation promoted by protoporphyrin in vitro. Mendeleev Communications, 2020, 30, 211-213.	1.6	6
12	Features of Nhitosan interaction with copper(II) and cobalt(II) tetrasulfophthalocyanines. Russian Journal of General Chemistry, 2017, 87, 2327-2331.	0.8	5
13	Lithium perchlorate (tetrafluoroborate)-diethyl carbonate-propylene carbonate electrolyte systems. Russian Journal of Physical Chemistry A, 2006, 80, 1265-1268.	0.6	4
14	Zinc tetra-4-(4'-carboxyphenoxy)phthalocyanine as a new site-specific marker for serum albumin. Russian Journal of Bioorganic Chemistry, 2016, 42, 29-35.	1.0	4
15	Spectral and thermochemical research of the DNA polyplex with chitosan formation process and the influence of anionic and cationic compounds. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 215, 153-157.	3.9	4
16	Molecular mechanisms causing albumin aggregation. The main role of the porphyrins of the blood group. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 118975.	3.9	4
17	Synthesis of Hetaryl-Substituted Asymmetric Porphyrins and Their Affinity to SARS-CoV-2 Helicase. Russian Journal of General Chemistry, 2021, 91, 1039-1049.	0.8	4
18	A study of protein aggregation activators in molecular complexes of cationic porphyrins and chlorin with BSA. Journal of Molecular Liquids, 2021, 338, 116632.	4.9	4

#	Article	IF	Citations
19	Macro-N-heterocyclic compounds: X-ray photoelectron spectra and structure. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2006, 32, 71-74.	1.0	3
20	Acrylamide polymers with covalently linked zinc(ii)tetraphenylporphyrin groups: synthesis and complexation with amino acids. Mendeleev Communications, 2018, 28, 158-160.	1.6	3
21	Effect of albumin on the aggregation of deuteroporphyrin in aqueous organic medium. Mendeleev Communications, 2020, 30, 805-808.	1.6	3
22	Destruction of Chitosan and Its Complexes with Cobalt(II) and Copper(II) Tetrasulphophthalocyanines. Polymers, 2021, 13, 2781.	4.5	3
23	Thermodynamic Aspects of Binding Proteins with Porphyrins. Spectral and Thermochemical Approaches. Macroheterocycles, 2017, 10, 37-42.	0.5	3
24	Photoisomerization of Styryl Derivatives of Pyridine N-Oxide. Russian Journal of Physical Chemistry A, 2018, 92, 804-808.	0.6	2
25	Pyrolysis of Complexes of Metallosulphophthalocyanines with Chitosan for Obtaining Graphite-Like Structures. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3991-4000.	3.7	2
26	Effect of macrocyclic compounds to protein aggregation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 95, 199-206.	1.6	1
27	Comparison of the complexing ability of zinc (II) porphyrins to diamines. Journal of Molecular Liquids, 2019, 288, 111024.	4.9	1
28	Effect of pH on Albumin Binding with Hydrophobic Porphyrins. Russian Journal of General Chemistry, 2019, 89, 565-569.	0.8	1
29	Chitosans: Thermochemical Study. Russian Journal of General Chemistry, 2019, 89, 2432-2437.	0.8	1
30	Aggregation of protein complexes with porphyrins under light irradiation. Journal of Porphyrins and Phthalocyanines, 2021, 25, 145-152.	0.8	1
31	Localization of porphyrins and their metal complexes in albumin and its effect on protein aggregation and denaturation. Journal of Molecular Structure, 2022, 1254, 132304.	3.6	1
32	Prospects for the use of macrocyclic photosensitizers for inactivation of SARS-CoV-2: selection of compounds leaders based on the molecular docking data. Journal of Biomolecular Structure and Dynamics, 0, , 1-10.	3.5	1
33	Interaction of 5-[4′-(N-Methyl-1,3-benzimidazol-2-yl)phenyl]-10,15,20-tri-(N-methyl-3′-pyridyl)porphyrin Triiodide with SARS-CoV-2 Spike Protein. Russian Journal of General Chemistry, 2022, 92, 1005-1010.	0.8	1
34	Complexing Ability of Heterocyclic N-Oxides Toward Proton Donor Compounds. Russian Journal of General Chemistry, 2019, 89, 1409-1414.	0.8	0
35	Method for Producing Graphite-Like Chitosan Structures by Thermolysis and Microwave Irradiation. Russian Journal of General Chemistry, 2020, 90, 2152-2155.	0.8	0