J Brendan Ritchie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3546003/publications.pdf

Version: 2024-02-01

759233 610901 35 840 12 24 citations h-index g-index papers 39 39 39 655 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	One object, two networks? Assessing the relationship between the face and body-selective regions in the primate visual system. Brain Structure and Function, 2022, 227, 1423-1438.	2.3	13
2	Recognizing why vision is inferential. SynthÃ^se, 2022, 200, 1.	1.1	0
3	Untangling the Animacy Organization of Occipitotemporal Cortex. Journal of Neuroscience, 2021, 41, 7103-7119.	3.6	25
4	Material perception for philosophers. Philosophy Compass, 2021, 16, e12777.	1.3	1
5	The unreliable influence of multivariate noise normalization on the reliability of neural dissimilarity. Neurolmage, 2021, 245, 118686.	4.2	8
6	When Scenes Look Like Materials: René Magritte's Reversible Figure–Ground Motif. Art and Perception, 2020, 8, 299-310.	0.5	4
7	Orthogonal Representations of Object Shape and Category in Deep Convolutional Neural Networks and Human Visual Cortex. Scientific Reports, 2020, 10, 2453.	3.3	47
8	What's wrong with the minimal conception of innateness in cognitive science?. SynthÃ^se, 2020, , 1.	1.1	1
9	The unreliable influence of noise normalization on the reliability of neural dissimilarity in visual and non-visual cortex. Journal of Vision, 2020, 20, 515.	0.3	0
10	Factors Determining Where Category-Selective Areas Emerge in Visual Cortex. Trends in Cognitive Sciences, 2019, 23, 784-797.	7.8	55
11	The content of Marr's information-processing framework. Philosophical Psychology, 2019, 32, 1078-1099.	0.9	10
12	Using neural distance to predict reaction time for categorizing the animacy, shape, and abstract properties of objects. Scientific Reports, 2019, 9, 13201.	3.3	10
13	The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks. Journal of Neuroscience, 2019, 39, 6513-6525.	3.6	60
14	A Varying Role for Abstraction in Models of Category Learning Constructed from Neural Representations in Early Visual Cortex. Journal of Cognitive Neuroscience, 2019, 31, 155-173.	2.3	11
15	Decoding the Brain: Neural Representation and the Limits of Multivariate Pattern Analysis in Cognitive Neuroscience. British Journal for the Philosophy of Science, 2019, 70, 581-607.	2.3	87
16	Ghosts in machine learning for cognitive neuroscience: Moving from data to theory. NeuroImage, 2018, 180, 88-100.	4.2	35
17	Deep Neural Networks Represent Semantic Category in Object Images Independently from Low-level Shape. , 2018, , .		0
18	The Zombie Attack, Perry's Parry, and a Riposte: A Slight Softening of the "Hard Problem―of Consciousness. Topoi, 2017, 36, 55-65.	1.3	0

#	Article	lF	Citations
19	Avoiding illusory effects in representational similarity analysis: What (not) to do with the diagonal. Neurolmage, 2017, 148, 197-200.	4.2	57
20	On the partnership between neural representations of object categories and visual features in the ventral visual pathway. Neuropsychologia, 2017, 105, 153-164.	1.6	93
21	Edge-Related Activity Is Not Necessary to Explain Orientation Decoding in Human Visual Cortex. Journal of Neuroscience, 2017, 37, 1187-1196.	3.6	16
22	Asymmetric Compression of Representational Space for Object Animacy Categorization under Degraded Viewing Conditions. Journal of Cognitive Neuroscience, 2017, 29, 1995-2010.	2.3	21
23	The Variable Role of Abstraction in the Neural Representation of Categories in the Visual System. Journal of Vision, 2017, 17, 1233.	0.3	0
24	Neural Decoding and "Inner―Psychophysics: A Distance-to-Bound Approach for Linking Mind, Brain, and Behavior. Frontiers in Neuroscience, 2016, 10, 190.	2.8	45
25	Emerging Object Representations in the Visual System Predict Reaction Times for Categorization. PLoS Computational Biology, 2015, 11, e1004316.	3.2	83
26	Reaction Time for Object Categorization Is Predicted by Representational Distance. Journal of Cognitive Neuroscience, 2014, 26, 132-142.	2.3	72
27	Can Object Category-Selectivity in the Ventral Visual Pathway Be Explained by Sensitivity to Low-Level Image Properties?. Journal of Neuroscience, 2014, 34, 14817-14819.	3.6	7
28	Talking about Causing Events. The Baltic International Yearbook of Cognition, Logic and Communication, $2014,9,.$	0.4	1
29	Tool Integration and Dynamic Touch. Psychological Science, 2013, 24, 1066-1068.	3.3	6
30	The emergence of metacognition: affect and uncertainty in animals. , 2012, , 76-93.		34
31	The Evolution of Self-Knowledge. Philosophical Topics, 2012, 40, 13-37.	0.3	8
32	Chalmers on Implementation and Computational Sufficiency. Journal of Cognitive Science, 2011, 12, 407-425.	0.2	2
33	Massive modularity is consistent with most forms of neural reuse. Behavioral and Brain Sciences, 2010, 33, 289-290.	0.7	3
34	Mirror, mirror, on the wall, is that even my hand at all? Changes in the afterimage of one's reflection in a mirror in response to bodily movement. Neuropsychologia, 2010, 48, 1495-1500.	1.6	11
35	The Bodily Senses., 0, , .		6