
Richard A Stabler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3545903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature Genetics, 2006, 38, 779-786.	21.4	821
2	Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biology, 2009, 10, R102.	9.6	431
3	Application of DNA Microarrays to Study the Evolutionary Genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Research, 2003, 13, 2018-2029.	5.5	154
4	Macro and Micro Diversity of Clostridium difficile Isolates from Diverse Sources and Geographical Locations. PLoS ONE, 2012, 7, e31559.	2.5	114
5	Effects of Eimeria tenella infection on chicken caecal microbiome diversity, exploring variation associated with severity of pathology. PLoS ONE, 2017, 12, e0184890.	2.5	109
6	Microarray analysis of the transcriptional responses of Clostridium difficile to environmental and antibiotic stress. Journal of Medical Microbiology, 2008, 57, 757-764.	1.8	94
7	Emergence of new PCR ribotypes from the hypervirulent Clostridium difficile 027 lineage. Journal of Medical Microbiology, 2012, 61, 49-56.	1.8	81
8	Evidence for Community Transmission of Community-Associated but Not Health-Care-Associated Methicillin-Resistant Staphylococcus Aureus Strains Linked to Social and Material Deprivation: Spatial Analysis of Cross-sectional Data. PLoS Medicine, 2016, 13, e1001944.	8.4	76
9	The Genotoxin Colibactin Is a Determinant of Virulence in Escherichia coli K1 Experimental Neonatal Systemic Infection. Infection and Immunity, 2015, 83, 3704-3711.	2.2	69
10	Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: an inter-laboratory study. Microbial Genomics, 2020, 6, .	2.0	69
11	Comparative analysis of BI/NAP1/027 hypervirulent strains reveals novel toxin B-encoding gene (tcdB) sequences. Journal of Medical Microbiology, 2008, 57, 771-775.	1.8	61
12	Assessing the role of p-cresol tolerance in Clostridium difficile. Journal of Medical Microbiology, 2008, 57, 745-749.	1.8	59
13	Comparative Genome Analysis and Global Phylogeny of the Toxin Variant Clostridium difficile PCR Ribotype 017 Reveals the Evolution of Two Independent Sublineages. Journal of Clinical Microbiology, 2017, 55, 865-876.	3.9	50
14	Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation. Journal of Biological Chemistry, 2016, 291, 25450-25461.	3.4	49
15	The Sudden Dominance of blaCTX–M Harbouring Plasmids in Shigella spp. Circulating in Southern Vietnam. PLoS Neglected Tropical Diseases, 2010, 4, e702.	3.0	48
16	Supporting surveillance capacity for antimicrobial resistance: Laboratory capacity strengthening for drug resistant infections in low and middle income countries. Wellcome Open Research, 2017, 2, 91.	1.8	48
17	The <i>In Vitro</i> and <i>In Vivo</i> Effect of Carvacrol in Preventing <i>Campylobacter</i> Infection, Colonization and in Improving Productivity of Chicken Broilers. Foodborne Pathogens and Disease, 2017, 14, 341-349.	1.8	42
18	Altered Innate Defenses in the Neonatal Gastrointestinal Tract in Response to Colonization by Neuropathogenic Escherichia coli. Infection and Immunity, 2013, 81, 3264-3275.	2.2	40

#	Article	IF	CITATIONS
19	Genome-Wide Identification by Transposon Insertion Sequencing of Escherichia coli K1 Genes Essential for <i>In Vitro</i> Growth, Gastrointestinal Colonizing Capacity, and Survival in Serum. Journal of Bacteriology, 2018, 200, .	2.2	32
20	The continually evolving <i>Clostridium difficile</i> species. Future Microbiology, 2012, 7, 945-957.	2.0	30
21	In-depth genetic analysis of <i>Clostridiumdifficile</i> PCR-ribotype 027 strains reveals high genome fluidity including point mutations and inversions. Gut Microbes, 2010, 1, 269-276.	9.8	29
22	Fabrication of a foldable all-in-one point-of-care molecular diagnostic microdevice for the facile identification of multiple pathogens. Sensors and Actuators B: Chemical, 2020, 314, 128057.	7.8	28
23	Genomic and Phenotypic Analyses of Acinetobacter baumannii Isolates From Three Tertiary Care Hospitals in Thailand. Frontiers in Microbiology, 2020, 11, 548.	3.5	26
24	Frequent Undetected Ward-Based Methicillin-Resistant Staphylococcus aureus Transmission Linked to Patient Sharing Between Hospitals. Clinical Infectious Diseases, 2018, 66, 840-848.	5.8	25
25	Impact of <i>Eimeria tenella</i> Coinfection on <i>Campylobacter jejuni</i> Colonization of the Chicken. Infection and Immunity, 2019, 87, .	2.2	25
26	Staphylococcal Phenotypes Induced by Naturally Occurring and Synthetic Membrane-Interactive Polyphenolic Î ² -Lactam Resistance Modifiers. PLoS ONE, 2014, 9, e93830.	2.5	23
27	Genome-Wide Evaluation of the Interplay between Caenorhabditis elegans and Yersinia pseudotuberculosis duringIn VivoBiofilm Formation. Infection and Immunity, 2015, 83, 17-27.	2.2	19
28	The association between antimicrobial resistance and HIV infection: a systematic review and meta-analysis. Clinical Microbiology and Infection, 2021, 27, 846-853.	6.0	17
29	Impact of azithromycin mass drug administration on the antibiotic-resistant gut microbiome in children: a randomized, controlled trial. Gut Pathogens, 2022, 14, 5.	3.4	17
30	Characterization of water and wildlife strains as a subgroup of <i><scp>C</scp>ampylobacter jejuni</i> using <scp>DNA</scp> microarrays. Environmental Microbiology, 2013, 15, 2371-2383.	3.8	16
31	<i>In Vitro</i> Susceptibility to Closthioamide among Clinical and Reference Strains of Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	15
32	Clonal variation in high- and low-level phenotypic and genotypic mupirocin resistance of MRSA isolates in south-east London. Journal of Antimicrobial Chemotherapy, 2015, 70, dkv248.	3.0	14
33	High-throughput analysis of Yersinia pseudotuberculosis gene essentiality in optimised in vitro conditions, and implications for the speciation of Yersinia pestis. BMC Microbiology, 2018, 18, 46.	3.3	13
34	Subscription model for antibiotic development. BMJ: British Medical Journal, 2019, 366, l5364.	2.3	13
35	Impact of the Mk VI SkinSuit on skin microbiota of terrestrial volunteers and an International Space Station-bound astronaut. Npj Microgravity, 2017, 3, 23.	3.7	11
36	Genetic and virulence characterization of colistin-resistant and colistin-sensitive A. baumannii clinical isolates. Diagnostic Microbiology and Infectious Disease, 2019, 95, 99-101.	1.8	10

RICHARD A STABLER

#	Article	IF	CITATIONS
37	Host Immunity to Clostridium difficile PCR Ribotype 017 Strains. Infection and Immunity, 2014, 82, 4989-4996.	2.2	9
38	Pathoadaptive Mutations of Escherichia coli K1 in Experimental Neonatal Systemic Infection. PLoS ONE, 2016, 11, e0166793.	2.5	8
39	Development and application of the active surveillance of pathogens microarray to monitor bacterial gene flux BMC Microbiology, 2008, 8, 177.	3.3	7
40	ls there an association between long-term antibiotics for acne and subsequent infection sequelae and antimicrobial resistance? A systematic review protocol. BMJ Open, 2020, 10, e033662.	1.9	7
41	Prevalence of ESBL-producing <i>Escherichia coli</i> in adults with and without HIV presenting with urinary tract infections to primary care clinics in Zimbabwe. JAC-Antimicrobial Resistance, 2021, 3, dlab082.	2.1	7
42	Antimicrobial Resistance in Gram-negative bacteria from Urinary Specimens: a study of prevalence, risk factors and molecular mechanisms of resistance (ARGUS) in Zimbabwe – a study protocol. Wellcome Open Research, 2020, 5, 140.	1.8	7
43	Analysis of Antimicrobial Resistance in Non-typhoidal Salmonella Collected From Pork Retail Outlets and Slaughterhouses in Vietnam Using Whole Genome Sequencing. Frontiers in Veterinary Science, 2022, 9, 816279.	2.2	7
44	Draft Genome Sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, Soil Bacteria That Cooperate To Degrade the Poly-γ- d -Glutamic Acid Anthrax Capsule. Genome Announcements, 2013, 1, .	0.8	6
45	Genome-wide assessment of antimicrobial tolerance in Yersinia pseudotuberculosis under ciprofloxacin stress. Microbial Genomics, 2019, 5, .	2.0	6
46	Is there an association between long-term antibiotics for acne and subsequent infection sequelae and antimicrobial resistance? A systematic review. BJGP Open, 2021, 5, BJGPO.2020.0181.	1.8	4
47	Sequential Vaccination With Heterologous Acinetobacter baumannii Strains Induces Broadly Reactive Antibody Responses. Frontiers in Immunology, 2021, 12, 705533.	4.8	4
48	Comparative Genomics of Campylobacter jejuni. , 2014, , 63-71.		3
49	Draft Genome Sequence of Campylobacter jejuni 11168H. Genome Announcements, 2017, 5, .	0.8	3
50	Ethnically diverse urban transmission networks of Neisseria gonorrhoeae without evidence of HIV serosorting. Sexually Transmitted Infections, 2020, 96, 106-109.	1.9	3
51	MdaB and NfrA, Two Novel Reductases Important in the Survival and Persistence of the Major Enteropathogen Campylobacter jejuni. Journal of Bacteriology, 2022, 204, JB0042121.	2.2	3
52	From FASTQ to Function: In Silico Methods for Processing Next-Generation Sequencing Data. Methods in Molecular Biology, 2016, 1476, 23-33.	0.9	1
53	Draft Genome Sequence of Robinsoniella peoriensis 6600698, a Confounder of Clostridium difficile Diagnosis. Genome Announcements, 2016, 4, .	0.8	1
54	Comparative Genome Analysis of Clostridium difficile Using DNA Microarrays. Methods in Molecular Biology, 2010, 646, 149-162.	0.9	1

#	Article	IF	CITATIONS
55	β-Lactam–Resistant <i>Streptococcus pneumoniae</i> Dynamics Following Treatment: A Dose-Response Meta-analysis. Clinical Infectious Diseases, 2022, 75, 1962-1970.	5.8	1
56	P17 Quality assurance in bacterial identification and antimicrobial susceptibility testing results: an essential component of antimicrobial resistance surveillance. JAC-Antimicrobial Resistance, 2022, 4, .	2.1	0