Rupesh Dash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/354487/publications.pdf

Version: 2024-02-01

73 papers 4,656 citations

94269 37 h-index 102304 66 g-index

79 all docs 79 docs citations

79 times ranked 8547 citing authors

#	Article	IF	CITATIONS
1	Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Progress in Polymer Science, 2008, 33, 998-1012.	11.8	316
2	Role of Excitatory Amino Acid Transporterâ€⊋ (EAAT2) and glutamate in neurodegeneration: Opportunities for developing novel therapeutics. Journal of Cellular Physiology, 2011, 226, 2484-2493.	2.0	308
3	The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials, 2011, 32, 3794-3806.	5.7	214
4	Targeting the Bcl-2 family for cancer therapy. Expert Opinion on Therapeutic Targets, 2013, 17, 61-75.	1.5	213
5	Targeting Mcl-1 for the therapy of cancer. Expert Opinion on Investigational Drugs, 2011, 20, 1397-1411.	1.9	173
6	Targeted Activation of Innate Immunity for Therapeutic Induction of Autophagy and Apoptosis in Melanoma Cells. Cancer Cell, 2009, 16, 103-114.	7.7	163
7	Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. BMB Reports, 2008, 41, 236-241.	1.1	160
8	Bcl-2 Antiapoptotic Family Proteins and Chemoresistance in Cancer. Advances in Cancer Research, 2018, 137, 37-75.	1.9	153
9	IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene, 2011, 30, 2345-2355.	2.6	136
10	Silk sericin protein of tropical tasar silkworm inhibits UVB-induced apoptosis in human skin keratinocytes. Molecular and Cellular Biochemistry, 2008, 311, 111-119.	1.4	133
11	Apogossypol derivative BI-97C1 (Sabutoclax) targeting Mcl-1 sensitizes prostate cancer cells to <i>mda</i> -7/IL-24–mediated toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8785-8790.	3.3	112
12	Mechanism of Autophagy to Apoptosis Switch Triggered in Prostate Cancer Cells by Antitumor Cytokine Melanoma Differentiation-Associated Gene 7/Interleukin-24. Cancer Research, 2010, 70, 3667-3676.	0.4	109
13	DDX3 modulates cisplatin resistance in OSCC through ALKBH5-mediated m6A-demethylation of FOXM1 and NANOG. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 233-246.	2.2	104
14	Astrocyte Elevated Gene-1: A Novel Target for Human Glioma Therapy. Molecular Cancer Therapeutics, 2010, 9, 79-88.	1.9	102
15	BI-97C1, an Optically Pure Apogossypol Derivative as Pan-Active Inhibitor of Antiapoptotic B-Cell Lymphoma/Leukemia-2 (Bcl-2) Family Proteins. Journal of Medicinal Chemistry, 2010, 53, 4166-4176.	2.9	102
16	mda-7/IL-24: A unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine and Growth Factor Reviews, 2010, 21, 381-391.	3.2	95
17	PERK–Dependent Regulation of Ceramide Synthase 6 and Thioredoxin Play a Key Role in <i>mda</i> -7/IL-24–Induced Killing of Primary Human Glioblastoma Multiforme Cells. Cancer Research, 2010, 70, 1120-1129.	0.4	95
18	Oncogene <i>AEG-1</i> Promotes Glioma-Induced Neurodegeneration by Increasing Glutamate Excitotoxicity. Cancer Research, 2011, 71, 6514-6523.	0.4	95

#	Article	IF	CITATIONS
19	Purification and biochemical characterization of a 70ÅkDa sericin from tropical tasar silkworm, Antheraea mylitta. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2007, 147, 129-134.	0.7	92
20	ZD6474, a dual tyrosine kinase inhibitor of EGFR and VEGFR-2, inhibits MAPK/ERK and AKT/PI3-K and induces apoptosis in breast cancer cells. Cancer Biology and Therapy, 2010, 9, 592-603.	1.5	83
21	Historical perspective and recent insights into our understanding of the molecular and biochemical basis of the antitumor properties of mda-7/IL-24. Cancer Biology and Therapy, 2009, 8, 402-411.	1.5	81
22	Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, Antheraea mylitta. International Journal of Biological Macromolecules, 2006, 38, 255-258.	3.6	80
23	MDA-9/Syntenin and IGFBP-2 Promote Angiogenesis in Human Melanoma. Cancer Research, 2013, 73, 844-854.	0.4	78
24	Mechanism by Which Mcl-1 Regulates Cancer-Specific Apoptosis Triggered by mda-7/IL-24, an IL-10–Related Cytokine. Cancer Research, 2010, 70, 5034-5045.	0.4	66
25	Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Scientific Reports, 2015, 5, 9982.	1.6	61
26	MDA-9/syntenin: a positive gatekeeper of melanoma metastasis. Frontiers in Bioscience - Landmark, 2012, 17, 1.	3.0	58
27	Ceramide plays a prominent role in MDAâ€7/ILâ€24â€induced cancerâ€specific apoptosis. Journal of Cellular Physiology, 2010, 222, 546-555.	2.0	54
28	The development of MDA-7/IL-24 as a cancer therapeutic., 2010, 128, 375-384.		54
28	The development of MDA-7/IL-24 as a cancer therapeutic. , 2010, 128, 375-384. Mcl-1 is an important therapeutic target for oral squamous cell carcinomas. Oncotarget, 2015, 6, 16623-16637.	0.8	50
	Mcl-1 is an important therapeutic target for oral squamous cell carcinomas. Oncotarget, 2015, 6,	0.8	
29	Mcl-1 is an important therapeutic target for oral squamous cell carcinomas. Oncotarget, 2015, 6, 16623-16637.		50
30	Mcl-1 is an important therapeutic target for oral squamous cell carcinomas. Oncotarget, 2015, 6, 16623-16637. MDA-7/IL-24 as a cancer therapeutic: from bench to bedside. Anti-Cancer Drugs, 2010, 21, 725-731. Analysis of Indian SARS-CoV-2 Genomes Reveals Prevalence of D614G Mutation in Spike Protein Predicting an Increase in Interaction With TMPRSS2 and Virus Infectivity. Frontiers in Microbiology,	0.7	50 48
29 30 31	Mcl-1 is an important therapeutic target for oral squamous cell carcinomas. Oncotarget, 2015, 6, 16623-16637. MDA-7/IL-24 as a cancer therapeutic: from bench to bedside. Anti-Cancer Drugs, 2010, 21, 725-731. Analysis of Indian SARS-CoV-2 Genomes Reveals Prevalence of D614G Mutation in Spike Protein Predicting an Increase in Interaction With TMPRSS2 and Virus Infectivity. Frontiers in Microbiology, 2020, 11, 594928. Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad.5/3) improves therapeutic	0.7	50 48 47
29 30 31 32	Mcl-1 is an important therapeutic target for oral squamous cell carcinomas. Oncotarget, 2015, 6, 16623-16637. MDA-7/IL-24 as a cancer therapeutic: from bench to bedside. Anti-Cancer Drugs, 2010, 21, 725-731. Analysis of Indian SARS-CoV-2 Genomes Reveals Prevalence of D614G Mutation in Spike Protein Predicting an Increase in Interaction With TMPRSS2 and Virus Infectivity. Frontiers in Microbiology, 2020, 11, 594928. Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad.5/3) improves therapeutic efficacy in low CAR prostate cancer cells. Cancer Gene Therapy, 2010, 17, 447-456. An Optically Pure Apogossypolone Derivative as Potent Pan-Active Inhibitor of Anti-Apoptotic Bcl-2	0.7 1.5 2.2	50484745
29 30 31 32 33	Mcl-1 is an important therapeutic target for oral squamous cell carcinomas. Oncotarget, 2015, 6, 16623-16637. MDA-7/IL-24 as a cancer therapeutic: from bench to bedside. Anti-Cancer Drugs, 2010, 21, 725-731. Analysis of Indian SARS-CoV-2 Genomes Reveals Prevalence of D614G Mutation in Spike Protein Predicting an Increase in Interaction With TMPRSS2 and Virus Infectivity. Frontiers in Microbiology, 2020, 11, 594928. Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad.5/3) improves therapeutic efficacy in low CAR prostate cancer cells. Cancer Gene Therapy, 2010, 17, 447-456. An Optically Pure Apogossypolone Derivative as Potent Pan-Active Inhibitor of Anti-Apoptotic Bcl-2 Family Proteins. Frontiers in Oncology, 2011, 1, 28. Enhanced delivery of <i>mdaâ€</i> > T/ILâ€24 using a serotype chimeric adenovirus (Ad.5/3) in combination with the apogossypol derivative Blâ€97C1 (Sabutoclax) improves therapeutic efficacy in low CAR	0.7 1.5 2.2	48474543

#	Article	IF	CITATIONS
37	Inhibition of AP-1 by SARI negatively regulates transformation progression mediated by CCN1. Oncogene, 2010, 29, 4412-4423.	2.6	40
38	Inhibition of Multiple Protective Signaling Pathways and Ad.5/3 Delivery Enhances mda-7/IL-24 Therapy of Malignant Glioma. Molecular Therapy, 2010, 18, 1130-1142.	3.7	40
39	The Impact of m6A RNA Modification in Therapy Resistance of Cancer: Implication in Chemotherapy, Radiotherapy, and Immunotherapy. Frontiers in Oncology, 2020, 10, 612337.	1.3	40
40	STAT3- and GSK3β-mediated Mcl-1 regulation modulates TPF resistance in oral squamous cell carcinoma. Carcinogenesis, 2019, 40, 173-183.	1.3	38
41	Melanoma Differentiation Associated Gene-7/Interleukin-24 Potently Induces Apoptosis in Human Myeloid Leukemia Cells through a Process Regulated by Endoplasmic Reticulum Stress. Molecular Pharmacology, 2010, 78, 1096-1104.	1.0	34
42	Pancreatic Cancer Combination Therapy Using a BH3 Mimetic and a Synthetic Tetracycline. Cancer Research, 2015, 75, 2305-2315.	0.4	34
43	Cisplatin Enhances Protein Kinase R-Like Endoplasmic Reticulum Kinase- and CD95-Dependent Melanoma Differentiation-Associated Gene-7/Interleukin-24–Induced Killing in Ovarian Carcinoma Cells. Molecular Pharmacology, 2010, 77, 298-310.	1.0	33
44	<i>mdaâ€7</i> /ILâ€24 differentially regulates soluble and nuclear clusterin in prostate cancer. Journal of Cellular Physiology, 2012, 227, 1805-1813.	2.0	33
45	A First-Generation Multi-Functional Cytokine for Simultaneous Optical Tracking and Tumor Therapy. PLoS ONE, 2012, 7, e40234.	1.1	31
46	Repetitive DNA in tropical tasar silkworm Antheraea mylitta. Gene, 2006, 370, 51-57.	1.0	28
47	FOXM1 expression mediates growth suppression during terminal differentiation of HO†human metastatic melanoma cells. Journal of Cellular Physiology, 2011, 226, 194-204.	2.0	28
48	ZD6474 enhances paclitaxel antiproliferative and apoptotic effects in breast carcinoma cells. Journal of Cellular Physiology, 2011, 226, 375-384.	2.0	28
49	A Serotype 5/3 Adenovirus Expressing MDA-7/IL-24 Infects Renal Carcinoma Cells and Promotes Toxicity of Agents That Increase Ros and Ceramide Levels. Molecular Pharmacology, 2011, 79, 368-380.	1.0	28
50	Good's buffer derived highly emissive carbon quantum dots: excellent biocompatible anticancer drug carrier. Journal of Materials Chemistry B, 2016, 4, 2412-2420.	2.9	28
51	Identification of oral cancer related candidate genes by integrating protein-protein interactions, gene ontology, pathway analysis and immunohistochemistry. Scientific Reports, 2017, 7, 2472.	1.6	27
52	CMTM6 drives cisplatin resistance by regulating Wnt signaling through ENO-1/AKT/GSK3 \hat{l}^2 axis. JCI Insight, 2021, 6, .	2.3	27
53	Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic. Oncotarget, 2015, 6, 10712-10727.	0.8	27
54	Cancer Terminator Viruses and Approaches for Enhancing Therapeutic Outcomes. Advances in Cancer Research, 2012, 115, 1-38.	1.9	26

#	Article	IF	Citations
55	Developing an effective gene therapy for prostate cancer: New technologies with potential to translate from the laboratory into the clinic. Discovery Medicine, 2011, 11, 46-56.	0.5	23
56	Quantitative proteomics of hamster lung tissues infected with SARSâ€CoVâ€2 reveal host factors having implication in the disease pathogenesis and severity. FASEB Journal, 2021, 35, e21713.	0.2	22
57	Human polynucleotide phosphorylase (hPNPaseold-35): an evolutionary conserved gene with an expanding repertoire of RNA degradation functions. Oncogene, 2011, 30, 1733-1743.	2.6	21
58	Enhanced prostate cancer gene transfer and therapy using a novel serotype chimera cancer terminator virus (Ad.5/3- <i>CTV</i>). Journal of Cellular Physiology, 2013, 229, n/a-n/a.	2.0	21
59	Selected Approaches for Rational Drug Design and High Throughput Screening to Identify Anti-Cancer Molecules. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 1143-1155.	0.9	19
60	Emerging strategies for the early detection and prevention of head and neck squamous cell cancer. Journal of Cellular Physiology, 2012, 227, 467-473.	2.0	19
61	RRBP1 rewires cisplatin resistance in oral squamous cell carcinoma by regulating Hippo pathway. British Journal of Cancer, 2021, 124, 2004-2016.	2.9	17
62	<i>mda-</i> 7/IL-24 Expression Inhibits Breast Cancer through Upregulation of Growth Arrest-Specific Gene 3 (<i> gas3</i>) and Disruption of \hat{I}^2 1 Integrin Function. Molecular Cancer Research, 2013, 11, 593-603.	1.5	16
63	RNA-Binding RING E3-Ligase DZIP3/hRUL138 Stabilizes Cyclin D1 to Drive Cell-Cycle and Cancer Progression. Cancer Research, 2021, 81, 315-331.	0.4	14
64	AEE788 potentiates celecoxib-induced growth inhibition and apoptosis in human colon cancer cells. Life Sciences, 2012, 91, 789-799.	2.0	13
65	BI-69A11 enhances susceptibility of colon cancer cells to mda-7/IL-24-induced growth inhibition by targeting Akt. British Journal of Cancer, 2014, 111, 101-111.	2.9	10
66	Chemoprevention Gene Therapy (CGT): Novel Combinatorial Approach for Preventing and Treating Pancreatic Cancer. Current Molecular Medicine, 2013, 13, 1140-1159.	0.6	10
67	Polyacryloyl hydrazide based injectable & stimuli responsive hydrogels with tunable properties. Journal of Materials Chemistry B, 2014, 2, 7429-7439.	2.9	9
68	Establishing Fascin over-expression as a strategic regulator of neoplastic aggression and lymph node metastasis in oral squamous cell carcinoma tumor microenvironment. Annals of Diagnostic Pathology, 2017, 30, 36-41.	0.6	8
69	SARI inhibits growth and reduces survival of oral squamous cell carcinomas (OSCC) by inducing endoplasmic reticulum stress. Life Sciences, 2021, 287, 120141.	2.0	5
70	Microtubuleâ€targeting agents impair kinesinâ€2â€dependent nuclear transport of βâ€catenin: Evidence of inhibition of Wnt/βâ€catenin signaling as an important antitumor mechanism of microtubuleâ€targeting agents. FASEB Journal, 2021, 35, e21539.	0.2	3
71	An integrated approach for identification of a panel of candidate genes arbitrated for invasion and metastasis in oral squamous cell carcinoma. Scientific Reports, 2021, 11, 6208.	1.6	3
72	IDENTIFICATION AND ASSESSMENT OF CANDIDATE BIOMARKERS IN EARLY DETECTION AND PROGRESSION OF ORAL SQUAMOUS CELL CARCINOMA. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2021, 132, e38.	0.2	0

#	Article	lF	CITATIONS
73	Potential role of TIGAR in OSCC: tumorigenesis and survival. Canadian Journal of Biotechnology, 2017, 1, 71-71.	0.3	0