Sung Ok Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3544772/publications.pdf Version: 2024-02-01

SUNC OF HAN

#	Article	IF	CITATIONS
1	Cellulosomes from Mesophilic Bacteria. Journal of Bacteriology, 2003, 185, 5907-5914.	1.0	132
2	Enzymatic coproduction of biodiesel and glycerol carbonate from soybean oil and dimethyl carbonate. Enzyme and Microbial Technology, 2011, 48, 505-509.	1.6	81
3	Synthesis of FAEEs from glycerol in engineered <i>Saccharomyces cerevisiae</i> using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnology and Bioengineering, 2012, 109, 110-115.	1.7	74
4	Engineering of glycerol utilization pathway for ethanol production by Saccharomyces cerevisiae. Bioresource Technology, 2010, 101, 4157-4161.	4.8	67
5	Improvement of surfactin production in <i>Bacillus subtilis</i> using synthetic wastewater by overexpression of specific extracellular signaling peptides, <i>comX</i> and <i>phrC</i> . Biotechnology and Bioengineering, 2012, 109, 2349-2356.	1.7	65
6	Regulation of Expression of Cellulosomal Cellulase and Hemicellulase Genes in Clostridium cellulovorans. Journal of Bacteriology, 2003, 185, 6067-6075.	1.0	62
7	Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation. Bioresource Technology, 2015, 187, 228-234.	4.8	62
8	Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: Advances and applications. Biotechnology Advances, 2013, 31, 936-944.	6.0	61
9	Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme and Microbial Technology, 2011, 48, 371-377.	1.6	59
10	Enzymatic production of glycerol carbonate from by-product after biodiesel manufacturing process. Enzyme and Microbial Technology, 2012, 51, 143-147.	1.6	54
11	Cellulosic alcoholic fermentation using recombinantSaccharomyces cerevisiaeengineered for the production ofClostridium cellulovoransendoglucanase andSaccharomycopsis fibuligeraβ-glucosidase. FEMS Microbiology Letters, 2009, 301, 130-136.	0.7	53
12	Regulation of Expression of Cellulosomes and Noncellulosomal (Hemi)Cellulolytic Enzymes in Clostridium cellulovorans during Growth on Different Carbon Sources. Journal of Bacteriology, 2004, 186, 4218-4227.	1.0	51
13	Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production. Journal of Biotechnology, 2017, 258, 69-78.	1.9	50
14	Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase. Microbiology (United Kingdom), 2007, 153, 2190-2202.	0.7	47
15	Effect of carbon source availability and growth phase on expression of Corynebacterium glutamicum genes involved in the tricarboxylic acid cycle and glyoxylate bypass. Microbiology (United Kingdom), 2008, 154, 3073-3083.	0.7	46
16	Production of Cellulosic Ethanol in Saccharomyces cerevisiae Heterologous Expressing Clostridium thermocellum Endoglucanase and Saccharomycopsis fibuligera β-glucosidase Genes. Molecules and Cells, 2009, 28, 369-374.	1.0	46
17	Highâ€yield lipid production from lignocellulosic biomass using engineered xyloseâ€utilizing <i>Yarrowia lipolytica</i> . GCB Bioenergy, 2020, 12, 670-679.	2.5	46
18	Antiplatelet activities of newly synthesized derivatives of piperlongumine. Phytotherapy Research, 2008, 22, 1195-1199.	2.8	43

#	Article	IF	CITATIONS
19	Development of Batch and Continuous Processes on Biodiesel Production in a Packed-Bed Reactor by a Mixture of Immobilized Candida rugosa and Rhizopus oryzae Lipases. Applied Biochemistry and Biotechnology, 2010, 161, 365-371.	1.4	43
20	Co-immobilization of Candida rugosa and Rhyzopus oryzae lipases and biodiesel production. Korean Journal of Chemical Engineering, 2013, 30, 1335-1338.	1.2	42
21	Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes. Bioresource Technology, 2019, 289, 121728.	4.8	42
22	Tolerance of Saccharomyces cerevisiae K35 to lignocellulose-derived inhibitory compounds. Biotechnology and Bioprocess Engineering, 2011, 16, 755-760.	1.4	38
23	Sugar recovery from rice straw by dilute acid pretreatment. Journal of Industrial and Engineering Chemistry, 2012, 18, 183-187.	2.9	38
24	Development of a <i>Saccharomyces cerevisiae</i> strain for increasing the accumulation of triacylglycerol as a microbial oil feedstock for biodiesel production using glycerol as a substrate. Biotechnology and Bioengineering, 2013, 110, 343-347.	1.7	38
25	Transcription of Clostridium cellulovorans Cellulosomal Cellulase and Hemicellulase Genes. Journal of Bacteriology, 2003, 185, 2520-2527.	1.0	37
26	5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzyme and Microbial Technology, 2015, 81, 1-7.	1.6	36
27	Effective melanin degradation by a synergistic laccase-peroxidase enzyme complex for skin whitening and other practical applications. International Journal of Biological Macromolecules, 2019, 129, 181-186.	3.6	36
28	Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae. FEMS Microbiology Letters, 2010, 310, 39-47.	0.7	35
29	Bi-functional cellulases complexes displayed on the cell surface of Corynebacterium glutamicum increase hydrolysis of lignocelluloses at elevated temperature. Enzyme and Microbial Technology, 2014, 66, 67-73.	1.6	35
30	Enzymatic coproduction of biodiesel and glycerol carbonate from soybean oil in solvent-free system. Enzyme and Microbial Technology, 2013, 53, 154-158.	1.6	34
31	Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization. Biotechnology Journal, 2016, 11, 1386-1396.	1.8	34
32	Animal-free heme production for artificial meat in Corynebacterium glutamicum via systems metabolic and membrane engineering. Metabolic Engineering, 2021, 66, 217-228.	3.6	31
33	Development of Escherichia coli MG1655 strains to produce long chain fatty acids by engineering fatty acid synthesis (FAS) metabolism. Enzyme and Microbial Technology, 2011, 49, 44-51.	1.6	29
34	The processive endoglucanase EngZ is active in crystalline cellulose degradation as a cellulosomal subunit of Clostridium cellulovorans. New Biotechnology, 2012, 29, 365-371.	2.4	28
35	Metabolic Design of <i>Corynebacterium glutamicum</i> for Production of <scp>l</scp> -Cysteine with Consideration of Sulfur-Supplemented Animal Feed. Journal of Agricultural and Food Chemistry, 2017, 65, 4698-4707.	2.4	28
36	Isolation and Expression of the xynB Gene and Its Product, XynB, a Consistent Component of the Clostridium cellulovorans Cellulosome. Journal of Bacteriology, 2004, 186, 8347-8355.	1.0	27

#	Article	IF	CITATIONS
37	Cellulosomic profiling produced by Clostridium cellulovorans during growth on different carbon sources explored by the cohesin marker. Journal of Biotechnology, 2010, 145, 233-239.	1.9	27
38	A celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradation. Applied Microbiology and Biotechnology, 2011, 90, 565-572.	1.7	26
39	Analysis of selective, high protein–protein binding interaction of cohesin–dockerin complex using biosensing methods. Biosensors and Bioelectronics, 2012, 35, 382-389.	5.3	26
40	Enzymatic degradation of lignocellulosic biomass by continuous process using laccase and cellulases with the aid of scaffoldin for ethanol production. Process Biochemistry, 2014, 49, 1266-1273.	1.8	26
41	Kinetic modeling of biodiesel production by mixed immobilized and co-immobilized lipase systems under two pressure conditions. Korean Journal of Chemical Engineering, 2013, 30, 1272-1276.	1.2	24
42	Comparative analysis of microRNA and mRNA expression profiles in cells and exosomes under toluene exposure. Toxicology in Vitro, 2017, 41, 92-101.	1.1	24
43	Effect of water availability on degradation of 2, 4-dichlorophenoxyacetic acid (2, 4-d) by soil microorganisms. Soil Biology and Biochemistry, 1994, 26, 1689-1697.	4.2	23
44	Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate. Journal of Biotechnology, 2010, 150, 209-214.	1.9	22
45	Biosynthesis of organic photosensitizer Zn-porphyrin by diphtheria toxin repressor (DtxR)-mediated global upregulation of engineered heme biosynthesis pathway in Corynebacterium glutamicum. Scientific Reports, 2018, 8, 14460.	1.6	22
46	Enhanced CO2 fixation and lipid production of Chlorella vulgaris through the carbonic anhydrase complex. Bioresource Technology, 2020, 318, 124072.	4.8	22
47	In situ detoxification of lignocellulosic hydrolysate using a surfactant for butyric acid production by Clostridium tyrobutyricum ATCC 25755. Process Biochemistry, 2015, 50, 630-635.	1.8	21
48	Molecular Cloning and Transcriptional and Expression Analysis of engO , Encoding a New Noncellulosomal Family 9 Enzyme, from Clostridium cellulovorans. Journal of Bacteriology, 2005, 187, 4884-4889.	1.0	20
49	Improvement of Ethanol Yield from Glycerol via Conversion of Pyruvate to Ethanol in Metabolically Engineered Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2012, 166, 856-865.	1.4	20
50	Enhanced electron transfer mediator based on biochar from microalgal sludge for application to bioelectrochemical systems. Bioresource Technology, 2018, 264, 387-390.	4.8	20
51	Enhanced Production of 5-aminolevulinic Acid via Flux Redistribution of TCA Cycle toward I-Glutamate in Corynebacterium glutamicum. Biotechnology and Bioprocess Engineering, 2019, 24, 915-923.	1.4	20
52	Enhancement of the thermostability and activity of mesophilic Clostridium cellulovorans EngD by in vitro DNA recombination with Clostridium thermocellum CelE. Journal of Bioscience and Bioengineering, 2010, 109, 331-336.	1.1	19
53	Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO ₂) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface. Chemical Communications, 2015, 51, 10202-10205.	2.2	19
54	Re-utilization of waste glycerol for continuous production of bioethanol by immobilized Enterobacter aerogenes. Journal of Cleaner Production, 2017, 161, 757-764.	4.6	19

#	Article	IF	CITATIONS
55	Creating a New Pathway inCorynebacterium glutamicumfor the Production of Taurine as a Food Additive. Journal of Agricultural and Food Chemistry, 2018, 66, 13454-13463.	2.4	19
56	Enhanced hydrolysis of lignocellulosic biomass: Biâ€functional enzyme complexes expressed in <i>Pichia pastoris</i> improve bioethanol production from <i>Miscanthus sinensis</i> . Biotechnology Journal, 2015, 10, 1912-1919.	1.8	18
57	Improved catalytic activities of a dye-decolorizing peroxidase (DyP) by overexpression of ALA and heme biosynthesis genes in Escherichia coli. Process Biochemistry, 2015, 50, 1272-1276.	1.8	18
58	Bioâ€Based Production of Dimethyl Itaconate From Rice Wine Wasteâ€Derived Itaconic Acid. Biotechnology Journal, 2017, 12, 1700114.	1.8	18
59	Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components. Enzyme and Microbial Technology, 2012, 51, 237-243.	1.6	17
60	GntR-Type Transcriptional Regulator PckR Negatively Regulates the Expression of Phosphoenolpyruvate Carboxykinase in Corynebacterium glutamicum. Journal of Bacteriology, 2012, 194, 2181-2188.	1.0	16
61	Process design and evaluation of value-added chemicals production from biomass. Biotechnology and Bioprocess Engineering, 2012, 17, 1055-1061.	1.4	16
62	Enhanced thermostability of mesophilic endoglucanase Z with a high catalytic activity at active temperatures. International Journal of Biological Macromolecules, 2016, 86, 269-276.	3.6	16
63	Systems metabolic engineering of Corynebacterium glutamicum for the bioproduction of biliverdin via protoporphyrin independent pathway. Journal of Biological Engineering, 2019, 13, 28.	2.0	16
64	Synergistic effect of the enzyme complexes comprising agarase, carrageenase and neoagarobiose hydrolase on degradation of the red algae. Bioresource Technology, 2018, 250, 666-672.	4.8	15
65	Efficient Synthesis of Food-Derived Antioxidant <scp>l</scp> -Ergothioneine by Engineered <i>Corynebacterium glutamicum</i> . Journal of Agricultural and Food Chemistry, 2022, 70, 1516-1524.	2.4	15
66	Enhanced biodegradation of waste poly(ethylene terephthalate) using a reinforced plastic degrading enzyme complex. Science of the Total Environment, 2022, 842, 156890.	3.9	15
67	Integration of Bacterial Expansin on Agarolytic Complexes to Enhance the Degrading Activity of Red Algae by Control of Gelling Properties. Marine Biotechnology, 2018, 20, 1-9.	1.1	14
68	Trienzymatic Complex System for Isomerization of Agar-Derived <scp>d</scp> -Galactose into <scp>d</scp> -Tagatose as a Low-Calorie Sweetener. Journal of Agricultural and Food Chemistry, 2020, 68, 3195-3202.	2.4	13
69	Bio-isopropanol production in Corynebacterium glutamicum: Metabolic redesign of synthetic bypasses and two-stage fermentation with gas stripping. Bioresource Technology, 2022, 354, 127171.	4.8	13
70	Identification and characterization of a transcriptional regulator, SucR, that influences sucCD transcription in Corynebacterium glutamicum. Biochemical and Biophysical Research Communications, 2010, 401, 300-305.	1.0	12
71	Production of functional agarolytic nano-complex for the synergistic hydrolysis of marine biomass and its potential application in carbohydrate-binding module-utilizing one-step purification. Process Biochemistry, 2012, 47, 877-881.	1.8	12
72	Signal amplification by a self-assembled biosensor system designed on the principle of dockerin–cohesin interactions in a cellulosome complex. Analyst, The, 2014, 139, 4790-4793.	1.7	12

#	Article	IF	CITATIONS
73	Eco-design and evaluation for production of 7-aminocephalosporanic acid from carbohydrate wastes discharged after microalgae-based biodiesel production. Journal of Cleaner Production, 2016, 133, 511-517.	4.6	12
74	Enhanced In-Vitro Hemozoin Polymerization by Optimized Process using Histidine-Rich Protein II (HRPII). Polymers, 2019, 11, 1162.	2.0	11
75	Power generation from cheese whey using enzymatic fuel cell. Journal of Cleaner Production, 2020, 254, 120181.	4.6	11
76	Enhanced production of polyhydroxybutyrate from syngas by using nanoscaled cellulose particles with a syngas-converting enzyme complex immobilized on Ralstonia eutropha. Journal of Cleaner Production, 2021, 285, 124903.	4.6	11
77	Isolation of Azospirillum spp. from natural soils by immunomagnetic separation. Soil Biology and Biochemistry, 1998, 30, 975-981.	4.2	10
78	Unique Contribution of the Cell Wall-Binding Endoglucanase G to the Cellulolytic Complex in Clostridium cellulovorans. Applied and Environmental Microbiology, 2013, 79, 5942-5948.	1.4	10
79	Expression of exosomal and cellular microRNAs: as biomarkers for toluene, ethylbenzene, xylene (TEX) exposure. Molecular and Cellular Toxicology, 2016, 12, 359-369.	0.8	10
80	Efficient enzymatic degradation process for hydrolysis activity of the Carrageenan from red algae in marine biomass. Journal of Biotechnology, 2014, 192, 108-113.	1.9	9
81	Hydrolytic effects of scaffolding proteins CbpB and CbpC on crystalline cellulose mediated by the major cellulolytic complex from Clostridium cellulovorans. Bioresource Technology, 2015, 191, 505-511.	4.8	9
82	Mutation of a conserved tryptophan residue in the CBM3c of a GH9 endoglucanase inhibits activity. International Journal of Biological Macromolecules, 2016, 92, 159-166.	3.6	9
83	Enhancing Fatty Acid Production of <i>Saccharomyces cerevisiae</i> as an Animal Feed Supplement. Journal of Agricultural and Food Chemistry, 2017, 65, 11029-11035.	2.4	9
84	Ecofriendly Synthesis of <scp>l</scp> -Carnosine in Metabolically Engineered <i>Corynebacterium glutamicum</i> by Reinforcing Precursor Accumulation. ACS Synthetic Biology, 2021, 10, 1553-1562.	1.9	9
85	Efficient utilization of brown algae for the production of Polyhydroxybutyrate (PHB) by using an enzyme complex immobilized on Ralstonia eutropha. International Journal of Biological Macromolecules, 2021, 189, 819-825.	3.6	9
86	Enhanced production of cellobiose dehydrogenase and β-glucosidase by Phanerochaete chrysosporium. Korean Journal of Chemical Engineering, 2012, 29, 77-81.	1.2	8
87	Biomimetic magnetoelectric nanocrystals synthesized by polymerization of heme as advanced nanomaterials for biosensing application. Biosensors and Bioelectronics, 2018, 114, 1-9.	5.3	8
88	Increased ethanol resistance in Ethanolic Escherichia coli by Insertion of heat-shock genes BEM1 and SOD2 from Saccharomyces cerevisiae. Biotechnology and Bioprocess Engineering, 2010, 15, 770-776.	1.4	7
89	Engineering of Corynebacterium glutamicum to utilize methyl acetate, a potential feedstock derived by carbonylation of methanol with CO. Journal of Biotechnology, 2016, 224, 47-50.	1.9	7
90	The potential of waste microalgal hydrolysate for power generation in enzymatic fuel cell. Journal of Cleaner Production, 2018, 187, 903-909.	4.6	7

Sung Ok Han

#	Article	IF	CITATIONS
91	Bioenergy and Biorefinery. Biotechnology Journal, 2019, 14, e1900160.	1.8	7
92	Improving Lipid Production of Yarrowia lipolytica by the Aldehyde Dehydrogenase-Mediated Furfural Detoxification. International Journal of Molecular Sciences, 2022, 23, 4761.	1.8	6
93	Efficient immobilization technique for enhancement of cellobiose dehydrogenase activity on silica gel. Biotechnology and Bioprocess Engineering, 2012, 17, 55-59.	1.4	4
94	An enhanced protein–protein interaction based on enzymatic complex through replacement of the recognition site. International Journal of Biological Macromolecules, 2015, 75, 1-6.	3.6	3
95	Enzymatic production of sugar from fungi and fungi-infected lignocellulosic biomass by a new cellulosomal enzyme harboring N-acetyl-I ² -d-glucosaminidase activity. Bioresource Technology, 2021, 319, 124242.	4.8	2
96	Non-Photosynthetic CO ₂ Utilization to Increase Fatty Acid Production in <i>Yarrowia lipolytica</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 11912-11918.	2.4	2
97	Glucose/Xylose Co-Fermenting Saccharomyces cerevisiae Increases the Production of Acetyl-CoA Derived n-Butanol From Lignocellulosic Biomass. Frontiers in Bioengineering and Biotechnology, 2022, 10, 826787.	2.0	1