
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3544395/publications.pdf Version: 2024-02-01

FAL PACHECO

#	Article	IF	CITATIONS
1	Soil losses in rural watersheds with environmental land use conflicts. Science of the Total Environment, 2014, 485-486, 110-120.	3.9	147
2	Impacts of land use conflicts on riverine ecosystems. Land Use Policy, 2015, 43, 48-62.	2.5	128
3	Environmental land use conflicts: A threat to soil conservation. Land Use Policy, 2014, 41, 172-185.	2.5	126
4	Environmental land use conflicts in catchments: A major cause of amplified nitrate in river water. Science of the Total Environment, 2016, 548-549, 173-188.	3.9	110
5	Factor weighting in DRASTIC modeling. Science of the Total Environment, 2015, 505, 474-486.	3.9	109
6	Land degradation: Multiple environmental consequences and routes to neutrality. Current Opinion in Environmental Science and Health, 2018, 5, 79-86.	2.1	106
7	Impacts of climate change and land-use scenarios on Margaritifera margaritifera, an environmental indicator and endangered species. Science of the Total Environment, 2015, 511, 477-488.	3.9	101
8	Groundwater quality in rural watersheds with environmental land use conflicts. Science of the Total Environment, 2014, 493, 812-827.	3.9	95
9	Anthropogenic nutrients and eutrophication in multiple land use watersheds: Best management practices and policies for the protection of water resources. Land Use Policy, 2017, 69, 1-11.	2.5	94
10	Rainwater harvesting systems for low demanding applications. Science of the Total Environment, 2015, 529, 91-100.	3.9	87
11	A framework model for the dimensioning and allocation of a detention basin system: The case of a flood-prone mountainous watershed. Journal of Hydrology, 2016, 533, 567-580.	2.3	84
12	Assessing anthropogenic impacts on riverine ecosystems using nested partial least squares regression. Science of the Total Environment, 2017, 583, 466-477.	3.9	83
13	Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses. Journal of Hydrology, 2017, 550, 318-330.	2.3	82
14	The impact of climate change, human interference, scale and modeling uncertainties on the estimation of aquifer properties and river flow components. Journal of Hydrology, 2014, 519, 1297-1314.	2.3	81
15	The role of environmental land use conflicts in soil fertility: A study on the Uberaba River basin, Brazil. Science of the Total Environment, 2016, 562, 463-473.	3.9	81
16	Rainwater harvesting in catchments for agro-forestry uses: A study focused on the balance between sustainability values and storage capacity. Science of the Total Environment, 2018, 613-614, 1079-1092.	3.9	80
17	Integrative assessment of river damming impacts on aquatic fauna in a Portuguese reservoir. Science of the Total Environment, 2017, 601-602, 1108-1118.	3.9	78
18	The multivariate statistical structure of DRASTIC model. Journal of Hydrology, 2013, 476, 442-459.	2.3	77

#	Article	IF	CITATIONS
19	A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management. Science of the Total Environment, 2015, 536, 295-305.	3.9	77
20	Contributions of Water-Rock Interactions to the Composition of Groundwater in Areas with a Sizeable Anthropogenic Input: A Case Study of the Waters of the Fundão Area, Central Portugal. Water Resources Research, 1996, 32, 3553-3570.	1.7	72
21	Controls and forecasts of nitrate yields in forested watersheds: A view over mainland Portugal. Science of the Total Environment, 2015, 537, 421-440.	3.9	70
22	From catchment to fish: Impact of anthropogenic pressures on gill histopathology. Science of the Total Environment, 2016, 550, 972-986.	3.9	62
23	Hydrochemistry, weathering and weathering rates on Madeira island. Journal of Hydrology, 2003, 283, 122-145.	2.3	61
24	Water resources planning for a river basin with recurrent wildfires. Science of the Total Environment, 2015, 526, 1-13.	3.9	61
25	Hydrogeochemistry in the Vouga River basin (central Portugal): Pollution and chemical weathering. Applied Geochemistry, 2006, 21, 580-613.	1.4	57
26	A partial least squares – Path modeling analysis for the understanding of biodiversity loss in rural and urban watersheds in Portugal. Science of the Total Environment, 2018, 626, 1069-1085.	3.9	57
27	Modeling rock weathering in small watersheds. Journal of Hydrology, 2014, 513, 13-27.	2.3	55
28	The impact of freshwater metal concentrations on the severity of histopathological changes in fish gills: A statistical perspective. Science of the Total Environment, 2017, 599-600, 217-226.	3.9	55
29	Regional groundwater flow in hard rocks. Science of the Total Environment, 2015, 506-507, 182-195.	3.9	54
30	Integrating topography, hydrology and rock structure in weathering rate models of spring watersheds. Journal of Hydrology, 2012, 428-429, 32-50.	2.3	53
31	Role of hydraulic diffusivity in the decrease of weathering rates over time. Journal of Hydrology, 2014, 512, 87-106.	2.3	50
32	Multi Criteria Analysis for the monitoring of aquifer vulnerability: A scientific tool in environmental policy. Environmental Science and Policy, 2015, 48, 250-264.	2.4	50
33	Role of fractures in weathering of solid rocks: narrowing the gap between laboratory and field weathering rates. Journal of Hydrology, 2006, 316, 248-265.	2.3	49
34	"Dedolomitization reactions―driven by anthropogenic activity on loessy sediments, SW Hungary. Applied Geochemistry, 2006, 21, 614-631.	1.4	48
35	Weathering of plagioclase across variable flow and solute transport regimes. Journal of Hydrology, 2012, 420-421, 46-58.	2.3	47
36	Mineral weathering rates calculated from spring water data: a case study in an area with intensive agriculture, the Morais Massif, northeast Portugal. Applied Geochemistry, 2002, 17, 583-603.	1.4	46

#	Article	IF	CITATIONS
37	Anthropogenic impacts on mineral weathering: A statistical perspective. Applied Geochemistry, 2013, 36, 34-48.	1.4	46
38	The Buffer Capacity of Riparian Vegetation to Control Water Quality in Anthropogenic Catchments from a Legally Protected Area: A Critical View over the Brazilian New Forest Code. Water (Switzerland), 2019, 11, 549.	1.2	46
39	Groundwater Recharge Potential for Sustainable Water Use in Urban Areas of the Jequitiba River Basin, Brazil. Sustainability, 2019, 11, 2955.	1.6	44
40	Application of Correspondence Analysis in the Assessment of Groundwater Chemistry. Mathematical Geosciences, 1998, 30, 129-161.	0.9	43
41	A legal framework with scientific basis for applying the â€~polluter pays principle' to soil conservation in rural watersheds in Brazil. Land Use Policy, 2017, 66, 61-71.	2.5	42
42	Two-Way Regionalized Classification of Multivariate Datasets and its Application to the Assessment of Hydrodynamic Dispersion. Mathematical Geosciences, 2005, 37, 393-417.	0.9	39
43	Modification to the DRASTIC framework to assess groundwater contaminant risk in rural mountainous catchments. Journal of Hydrology, 2018, 566, 175-191.	2.3	39
44	Title is missing!. Water, Air, and Soil Pollution, 1999, 115, 481-512.	1.1	36
45	Flood Vulnerability, Environmental Land Use Conflicts, and Conservation of Soil and Water: A Study in the Batatais SP Municipality, Brazil. Water (Switzerland), 2018, 10, 1357.	1.2	36
46	A structural equation model to predict macroinvertebrate-based ecological status in catchments influenced by anthropogenic pressures. Science of the Total Environment, 2019, 681, 242-257.	3.9	32
47	Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas. International Journal of Environmental Research and Public Health, 2019, 16, 2542.	1.2	29
48	Land capability of multiple-landform watersheds with environmental land use conflicts. Land Use Policy, 2019, 81, 689-704.	2.5	28
49	Prognosis of metal concentrations in sediments and water of Paraopeba River following the collapse of B1 tailings dam in Brumadinho (Minas Gerais, Brazil). Science of the Total Environment, 2022, 809, 151157.	3.9	28
50	Diagnosis of degraded pastures using an improved NDVI-based remote sensing approach: An application to the Environmental Protection Area of Uberaba River Basin (Minas Gerais, Brazil). Remote Sensing Applications: Society and Environment, 2019, 14, 20-33.	0.8	27
51	The assessment of water erosion using Partial Least Squares-Path Modeling: A study in a legally protected area with environmental land use conflicts. Science of the Total Environment, 2019, 691, 1225-1241.	3.9	26
52	The modeling of pasture conservation and of its impact on stream water quality using Partial Least Squares-Path Modeling. Science of the Total Environment, 2019, 697, 134081.	3.9	26
53	A multi criteria analog model for assessing the vulnerability of rural catchments to road spills of hazardous substances. Environmental Impact Assessment Review, 2017, 64, 26-36.	4.4	25
54	Water security threats and challenges following the rupture of large tailings dams. Science of the Total Environment, 2022, 834, 155285.	3.9	25

#	Article	IF	CITATIONS
55	Hydraulic diffusivity and macrodispersivity calculations embedded in a geographic information system. Hydrological Sciences Journal, 2013, 58, 930-944.	1.2	24
56	Integrating ecosystem services into sustainable landscape management: A collaborative approach. Science of the Total Environment, 2021, 794, 148538.	3.9	23
57	A Regression Model of Stream Water Quality Based on Interactions between Landscape Composition and Riparian Buffer Width in Small Catchments. Water (Switzerland), 2019, 11, 1757.	1.2	22
58	Finding the number of natural clusters in groundwater data sets using the concept of equivalence class. Computers and Geosciences, 1998, 24, 7-15.	2.0	21
59	The Role of Landscape Configuration, Season, and Distance from Contaminant Sources on the Degradation of Stream Water Quality in Urban Catchments. Water (Switzerland), 2019, 11, 2025.	1.2	21
60	Flood risk attenuation in critical zones of continental Portugal using sustainable detention basins. Science of the Total Environment, 2020, 721, 137727.	3.9	20
61	The consequences for stream water quality of long-term changes in landscape patterns: Implications for land use management and policies. Land Use Policy, 2021, 109, 105679.	2.5	20
62	Can Land Cover Changes Mitigate Large Floods? A Reflection Based on Partial Least Squares-Path Modeling. Water (Switzerland), 2019, 11, 684.	1.2	18
63	Seasonal effect of land use management on gill histopathology of Barbel and Douro Nase in a Portuguese watershed. Science of the Total Environment, 2021, 764, 142869.	3.9	18
64	A case study of factors controlling water quality in two warm monomictic tropical reservoirs located in contrasting agricultural watersheds. Science of the Total Environment, 2021, 762, 144511.	3.9	18
65	An Assessment of Groundwater Contamination Risk with Radon Based on Clustering and Structural Models. Water (Switzerland), 2019, 11, 1107.	1.2	17
66	Water security and watershed management assessed through the modelling of hydrology and ecological integrity: A study in the Galicia-Costa (NW Spain). Science of the Total Environment, 2021, 759, 143905.	3.9	16
67	ls it safe to remove a dam at the risk of a sprawl by exotic fish species?. Science of the Total Environment, 2021, 771, 144768.	3.9	16
68	Impacts of land use and infrastructural changes on threatened Little Bustard <i>Tetrax tetrax</i> breeding populations: quantitative assessments using a recently developed spatially explicit dynamic modelling framework. Bird Conservation International, 2016, 26, 418-435.	0.7	15
69	Hydrologic Impacts of Land Use Changes in the Sabor River Basin: A Historical View and Future Perspectives. Water (Switzerland), 2019, 11, 1464.	1.2	15
70	A New Framework for the Management and Radiological Protection of Groundwater Resources: The Implementation of a Portuguese Action Plan for Radon in Drinking Water and Impacts on Human Health. Water (Switzerland), 2019, 11, 760.	1.2	15
71	A new radon prediction approach for an assessment of radiological potential in drinking water. Science of the Total Environment, 2020, 712, 136427.	3.9	15
72	Geochemistry of waters associated with the old mine workings at Fonte Santa (NE of Portugal). Journal of Geochemical Exploration, 2010, 105, 153-165.	1.5	14

#	Article	IF	CITATIONS
73	A partial least squares-path model of causality among environmental deterioration indicators in the dry period of Paraopeba River after the rupture of B1 tailings dam in Brumadinho (Minas Gerais,) Tj ETQq1	1 0.78431 4 rgBT	∫∕Ωverlock 1
74	Development of a Hydrologic and Water Allocation Model to Assess Water Availability in the Sabor River Basin (Portugal). International Journal of Environmental Research and Public Health, 2019, 16, 2419.	1.2	13
75	Production of clean water in agriculture headwater catchments: A model based on the payment for environmental services. Science of the Total Environment, 2021, 785, 147331.	3.9	13
76	Seasonal Differences in Water Pollution and Liver Histopathology of Iberian Barbel (Luciobarbus) Tj ETQq0 (Switzerland), 2022, 14, 444.	0 0 rgBT /Overlo 1.2	ck 10 Tf 50 13
77	Spatial indicator of priority areas for the implementation of agroforestry systems: An optimization strategy for agricultural landscapes restoration. Science of the Total Environment, 2022, 839, 156185.	3.9	13
78	An approach to validate groundwater contamination risk in rural mountainous catchments: the role of lateral groundwater flows. MethodsX, 2018, 5, 1447-1455.	0.7	12
79	Seasonal and Scale Effects of Anthropogenic Pressures on Water Quality and Ecological Integrity: A Study in the Sabor River Basin (NE Portugal) Using Partial Least Squares-Path Modeling. Water (Switzerland), 2019, 11, 1941.	1.2	12
80	Undamming the Douro River Catchment: A Stepwise Approach for Prioritizing Dam Removal. Water (Switzerland), 2019, 11, 693.	1.2	12
81	The Potential of Small Dams for Conjunctive Water Management in Rural Municipalities. International Journal of Environmental Research and Public Health, 2019, 16, 1239.	1.2	12
82	Sustainable Use of Soils and Water: The Role of Environmental Land Use Conflicts. Sustainability, 2020, 12, 1163.	1.6	12
83	Response to pumping of wells in sloping fault zone aquifers. Journal of Hydrology, 2002, 259, 116-135.	2.3	11
84	Bridging hydraulic diffusivity from aquifer to particle-size scale: a study on loess sediments from southwest Hungary. Hydrological Sciences Journal, 2015, 60, 269-284.	1.2	10
85	Natural and anthropogenic causes of mortality in wild birds in a wildlife rehabilitation centre in Northern Portugal: a ten-year study. Bird Study, 2019, 66, 484-493.	0.4	10
86	Modelling of threats that affect Cyano-HABs in an eutrophicated reservoir: First phase towards water security and environmental governance in watersheds. Science of the Total Environment, 2022, 809, 152155.	3.9	10
87	Infiltration in the Corgo River basin (northern Portugal): coupling water balances with rainfall—runoff regressions on a monthly basis. Hydrological Sciences Journal, 2006, 51, 989-1005.	1.2	9
88	Preservation of wild bird species in northern Portugal - Effects of anthropogenic pressures in wild bird populations (2008–2017). Science of the Total Environment, 2019, 650, 2996-3006.	3.9	9
89	Estimating water erosion from the brightness index of orbital images: A framework for the prognosis of degraded pastures. Science of the Total Environment, 2021, 776, 146019.	3.9	9
90	Role of Mine Tailings in the Spatio-Temporal Distribution of Phosphorus in River Water: The Case of B1 Dam Break in Brumadinho. Water (Switzerland), 2022, 14, 1572.	1.2	9

#	Article	IF	CITATIONS
91	Occurrence of springs in massifs of crystalline rocks, northern Portugal. Hydrogeology Journal, 2002, 10, 239-253.	0.9	8
92	Hydraulic head response of a confined aquifer influenced by river stage fluctuations and mechanical loading. Journal of Hydrology, 2015, 531, 716-727.	2.3	8
93	The Configuration of Forest Cover in Ribeirão Preto: A Diagnosis of Brazil's Forest Code Implementation. Sustainability, 2020, 12, 5686.	1.6	8
94	Combination of Ecological Engineering Procedures Applied to Morphological Stabilization of Estuarine Banks after Dredging. Water (Switzerland), 2020, 12, 391.	1.2	8
95	A combined GIS-MCDA approach to prioritize stream water quality interventions, based on the contamination risk and intervention complexity. Science of the Total Environment, 2021, 798, 149322.	3.9	8
96	Potential Impacts of Land Use Changes on Water Resources in a Tropical Headwater Catchment. Water (Switzerland), 2021, 13, 3249.	1.2	8
97	The vulnerability of the environment to spills of dangerous substances on highways: A diagnosis based on multi criteria modeling. Transportation Research, Part D: Transport and Environment, 2018, 62, 748-759.	3.2	7
98	A Method for Estimating the Risk of Dam Reservoir Silting in Fire-Prone Watersheds: A Study in Douro River, Portugal. Water (Switzerland), 2020, 12, 2959.	1.2	7
99	Water Security Assessment of Groundwater Quality in an Anthropized Rural Area from the Atlantic Forest Biome in Brazil. Water (Switzerland), 2020, 12, 623.	1.2	7
100	Exploring the Effects of Landscape Metrics in Water Quality, Ave River Basin Case Study. International Journal of Design and Nature and Ecodynamics, 2020, 15, 65-72.	0.3	7
101	Exploratory assessment of groundwater vulnerability to pollution in the Sordo River Basin, Northeast of Portugal. Revista Escola De Minas, 2013, 66, 49-58.	0.1	6
102	DRASTIC and GOD vulnerability maps of the Cabril River Basin, Portugal. Revista Escola De Minas, 2014, 67, 133-142.	0.1	6
103	A raw water security risk model for urban supply based on failure mode analysis. Journal of Hydrology, 2021, 593, 125843.	2.3	6
104	PATH MODELLING ANALYSIS OF POLLUTION SOURCES AND ENVIRONMENTAL CONSEQUENCES IN RIVER BASINS. WIT Transactions on Ecology and the Environment, 2018, , .	0.0	6
105	The Assessment of Hydrological Availability and the Payment for Ecosystem Services: A Pilot Study in a Brazilian Headwater Catchment. Water (Switzerland), 2020, 12, 2726.	1.2	5
106	An Improved Model for the Evaluation of Groundwater Recharge Based on the Concept of Conservative Use Potential: A Study in the River Pandeiros Watershed, Minas Gerais, Brazil. Water (Switzerland), 2020, 12, 1001.	1.2	5
107	Hydrology and stream water quality of fire-prone watersheds. Current Opinion in Environmental Science and Health, 2021, 21, 100243.	2.1	5
108	Diagnosis on Transport Risk Based on a Combined Assessment of Road Accidents and Watershed Vulnerability to Spills of Hazardous Substances. International Journal of Environmental Research and Public Health, 2018, 15, 2011.	1.2	4

#	Article	IF	CITATIONS
109	Conjunctive Water Resources Management in Densely Urbanized Karst Areas: A Study in the Sete Lagoas Region, State of Minas Gerais, Brazil. Sustainability, 2019, 11, 3944.	1.6	4
110	Watersheds, Anthropogenic Activities and the Role of Adaptation to Environmental Impacts. Water (Switzerland), 2020, 12, 3451.	1.2	3
111	Distribution and Potential Availability of As, Metals and P in Sediments from a Riverine Reservoir in a Rural Mountainous Catchment (NE Portugal). International Journal of Environmental Research and Public Health, 2021, 18, 5616.	1.2	3
112	ANALYSIS OF HYDROLOGY AND WATER ALLOCATION WITH SWAT AND MIKE HYDRO BASIN IN THE SABOR RIVER BASIN, PORTUGAL. , 2018, , .		3
113	EFFECT OF LANDSCAPE METRICS ON WATER QUALITY OVER THREE DECADES: A CASE STUDY OF THE AVE RIVER BASIN, PORTUGAL. , 2020, , .		3
114	PLS-PM FOR ECOLOGICAL INTEGRITY MAPPING: CASE STUDY OF THE AVE RIVER BASIN, PORTUGAL. WIT Transactions on Ecology and the Environment, 2019, , .	0.0	3
115	Water-Secure River Basins: A Compromise of Policy, Governance and Management with the Environment. Water (Switzerland), 2022, 14, 1329.	1.2	2
116	A groundwater security model based on hydraulic turnover times and flow compartments. MethodsX, 2022, 9, 101766.	0.7	2
117	RIVER RESTORATION FOR THE REPLACEMENT OF LOST SPAWNING GROUNDS DUE TO DAM CONSTRUCTION. , 2021, , .		1
118	Application of an improved vegetation index based on the visible spectrum in the diagnosis of degraded pastures: Implications for development. Land Degradation and Development, 2021, 32, 4693.	1.8	1
119	Impact of anthropogenic pressures on wild mammals of Northern Portugal. Veterinary World, 2020, 13, 2691-2702.	0.7	1
120	Methodological proposal for Payments for Environmental Services (PES) aiming to produce clean water in springs. CiAªncia E Natura, 0, 44, e23.	0.0	1
121	Mortality of wild amphibians and reptiles admitted to a Wildlife Rehabilitation Center in Northern Portugal (2009 – 2017). Russian Journal of Herpetology, 2021, 28, 89-96.	0.2	0
122	Impact of anthropogenic stressors in the mortality of endangered vertebrate species: a 10-year study in Northern Portugal. Exploratory Animal and Medical Research, 2021, 11, 14.	0.1	0
123	PATH MODELLING ANALYSIS OF NATURAL RADIOACTIVITY IN DRINKING WATER AND PUBLIC HEALTH IMPACTS. WIT Transactions on Ecology and the Environment, 2019, , .	0.0	0
124	Improving Water Security in the Metropolitan Region of Belo Horizonte Following the Rupture of B1 Tailings Dam in Brumadinho (Minas Gerais, Brazil). SSRN Electronic Journal, 0, , .	0.4	0
125	Spatial Indicator of Priority Areas for the Implementation of Agroforestry Systems in Semi-Deciduous Tropical Forest: An Optimization Strategy for Ecological Recovery and Payment for Environmental Services. SSRN Electronic Journal, 0, , .	0.4	0